Как решать градиенты. Градиент функции и производная по направлению вектора

Из школьного курса математики известно, что вектор на плоскости представляет собой направленный отрезок. Его начало и конец имеют по две координаты. Координаты вектора рассчитываются путем вычитания из координат конца координат начала.

Понятие вектора может быть распространено и на n-мерное пространство (вместо двух координат будет n координат).

Градиентом grad z функции z = f(х 1 , х 2 , …х n) называется вектор частных производных функции в точке, т.е. вектор с координатами .

Можно доказать, что градиент функции характеризует направление наискорейшего роста уровня функции в точке.

Например, для функции z = 2х 1 + х 2 (см. рисунок 5.8) градиент в любой точке будет иметь координаты (2; 1). Построить его на плоскости можно различными способами, взяв в качестве начала вектора любую точку. Например, можно соединить точку (0; 0) с точкой (2; 1), или точку (1; 0) с точкой (3; 1), или точку (0; 3) с точкой (2; 4), или т.п. (см. рисунок 5.8). Все построенные таким образом вектора будут иметь координаты (2 – 0; 1 – 0) =
= (3 – 1; 1 – 0) = (2 – 0; 4 – 3) = (2; 1).

Из рисунка 5.8 хорошо видно, что уровень функции растет в направлении градиента, поскольку построенные линии уровня соответствуют значениям уровня 4 > 3 > 2.

Рисунок 5.8 - Градиент функции z = 2х 1 + х 2

Рассмотрим другой пример – функцию z = 1/(х 1 х 2). Градиент этой функции уже не будет всегда одинаковым в разных точках, поскольку его координаты определяются формулами (-1/(х 1 2 х 2); -1/(х 1 х 2 2)).

На рисунке 5.9 представлены линии уровня функции z = 1/(х 1 х 2) для уровней 2 и 10 (прямая 1/(х 1 х 2) = 2 обозначена пунктиром, а прямая
1/(х 1 х 2) = 10 – сплошной линией).

Рисунок 5.9 - Градиенты функции z = 1/(х 1 х 2) в различных точках

Возьмем, например, точку (0,5; 1) и вычислим градиент в этой точке: (-1/(0,5 2 *1); -1/(0,5*1 2)) = (-4; -2). Заметим, что точка (0,5; 1) лежит на линии уровня 1/(х 1 х 2) = 2, ибо z = f(0,5; 1) = 1/(0,5*1) = 2. Чтобы изобразить вектор (-4; -2) на рисунке 5.9, соединим точку (0,5; 1) с точкой (-3,5; -1), ибо
(-3,5 – 0,5; -1 - 1) = (-4; -2).

Возьмем другую точку на той же самой линии уровня, например, точку (1; 0,5) (z = f(1; 0,5) = 1/(0,5*1) = 2). Вычислим градиент в этой точке
(-1/(1 2 *0,5); -1/(1*0,5 2)) = (-2; -4). Чтобы изобразить его на рисунке 5.9, соединим точку (1; 0,5) с точкой (-1; -3,5), ибо (-1 - 1; -3,5 - 0,5) = (-2; -4).

Возьмем еще одну точку на той же самой линии уровня, но только теперь в неположительной координатной четверти. Например, точку (-0,5; -1) (z = f(-0,5; -1) = 1/((-1)*(-0,5)) = 2). Градиент в этой точке будет равен
(-1/((-0,5) 2 *(-1)); -1/((-0,5)*(-1) 2)) = (4; 2). Изобразим его на рисунке 5.9, соединив точку (-0,5; -1) с точкой (3,5; 1), ибо (3,5 – (-0,5); 1 – (-1)) = (4; 2).

Понятие производной по направлению рассматривается для функций двух и трёх переменных. Чтобы понять смысл производной по направлению, нужно сравнить производные по определению

Следовательно,

Теперь можем найти производную по направлению данной функции по её формуле:

А сейчас - домашнее задание. В нём дана функция не трёх, а лишь двух переменных, но несколько иначе задан направляющий вектор. Так что придётся вновь повторить векторную алгебру .

Пример 2. Найти производную функции в точке M 0 (1; 2) по направлению вектора , где M 1 - точка с координатами (3; 0) .

Вектор, задающий направление производной, может быть дан и в такой форме, как в следующем примере - в виде разложения по ортам координатных осей , но эта хорошо знакомая тема из самого начала векторной алгебры.

Пример 3. Найти производную функции в точке M 0 (1; 1; 1) по направлению вектора .

Решение. Найдём направляющие косинусы вектора

Найдём частные производные функции в точке M 0 :

Следовательно, можем найти производную по направлению данной функции по её формуле:

.

Градиент функции

Градиент функции нескольких переменных в точке M 0 характеризует направление максимального роста этой функции в точке M 0 и величину этого максимального роста.

Как найти градиент?

Нужно определить вектор, проекциями которого на оси координат являются значения частных производных , , этой функции в соответствующей точке:

.

То есть, должно получиться представление вектора по ортам координатных осей , в котором на каждый орт умножается соответствующая его оси частная производная.

Рассмотрим формулу производной скалярной функции u по направлению λ

Вторые множители являются проекциями единичного вектора , направленного по лучу λ .

Возьмем вектор, проекциями которого на оси координат будут значения частных производных в выбранной т. Р(x, y, z).

Этот вектор называют градиентом функции u (x, y, z) и обозначают graduили

Определение. Градиентом функции u(x, y, z) называют вектор, проекциями которого служат значения частных производных этой функции, т.е.

Производная функции по данному направлению равна скалярному произведению градиента функции на единичный вектор этого направления.

Раскрывая скалярное произведение, получим

,

где φ – угол между вектором gradu и лучом λ.

Достигает наибольшего значения

Итак, есть наибольшее значение производной в данной т.Р, а направление grad u совпадает с направлением луча, выходящего из т.Р, вдоль которого функция меняется быстрее всего.

Установим связь между направлением градиента функции и поверхностями уровня скалярного поля.

Теорема. Градиент функции u (x,y,z) в каждой точке совпадает с нормалью к поверхности уровня скалярного поля, проходящей через эту точку.

Доказательство. Выберем произвольную т. Р 0 (x 0, y 0 , z 0).

Уравнение поверхности

уровня, проходящей через

т. будет u(x,y,z)= ,

u 0 = u (x 0 , y 0 , z 0)

Уравнение нормали к этой поверхности в т. , будет

Отсюда и следует, что направляющий вектор нормали, имеющий проекции , является градиентом функции u (x, y, z) в т. Р 0 , ч.т.д.

Таким образом, градиент в каждой точке перпендикулярен касательной плоскости к поверхности уровня, проходящей через данную точку, т.е. его проекция на эту плоскость равна нулю.

Следовательно: Производная по любому направлению, касательному к поверхности уровня, проходящей через данную точку, равна нулю.

Основные свойства градиента функции:

2) grad , где С – Const

4) grad

Все свойства доказываются, используя определение градиента функции.

Пример. В т. М(1, 1, 1) найти направление наибольшего изменения скалярного поля и величину этого изменения.

Если в каждой точке пространства или части пространства определено значение некоторой величины, то говорят, что задано поле данной величины. Поле называется скалярным, если рассматриваемая величина скалярна, т.е. вполне характеризуется своим числовым значением. Например, поле температур. Скалярное поле задается скалярной функцией точки и = /(М). Если в пространстве введена декартова система координат, то и есть функция трех переменных х, yt z - координат точки М: Определение. Поверхностью уровня скалярного поля называется множество точек, в которых функция f(M) принимает одно и то же значение. Уравнение поверхности уровня Пример 1. Найти поверхности уровня скалярного поля ВЕКТОРНЫЙ АНАЛИЗ Скалярное поле Поверхности и линии уровня Производная по направлению Производная Градиент скалярного поля Основные свойства градиента Инвариантное определение градиента Правила вычисления градиента -4 Согласно определению уравнением поверхности уровня будет. Это уравнение сферы (с Ф 0) с центром в начале координат. Скалярное поле называется плоским, если во всех плоскостях, параллельных некоторой плоскости, поле одно и то же. Если указанную плоскость принять за плоскость хОу, то функция поля не будет зависеть от координаты z, т. е. будет функцией только аргументов х и у, Плоское поле можно характеризовать помощьюлиний уровня - множестваточек плоскости, в которых функция /(ж, у) имеетодно и тоже значение. Уравнение линии уровня - Пример 2. Найти линии уровня скалярного поля Линии уровня задаются уравнениями При с = 0 получаем пару прямых получаем семейство гипербол (рис. 1). 1.1. Производная по направлению Пусть имеется скалярное поле, определяемое скалярной функцией и = /(Af). Возьмем точку Afo и выберем направление, определяемое вектором I. Возьмем другую точку М так, чтобы вектор М0М был параллелен вектору 1 (рис. 2). Обозначим длину вектора МоМ через А/, а приращение функции /(Af) - /(Afo), соответствующее перемещению Д1, через Ди. Отношение определяет среднюю скорость изменения скалярного поля на единицу длины поданному направлению Пусть теперь стремится к нулю так, чтобы вектор М0М все время оставался параллельным вектору I. Определение. Если при Д/ О существует конечный предел отношения (5), то его называют производной функции в данной точке Afo поданному направлению I и обозначают символом зг!^ . Так что, по определению, Это определение не связано с выбором системы координат, т. е. носит**вариантный характер. Найдем выражение для производной по направлению в декартовой системе координат. Пусть функция / дифференцируема в точке. Рассмотрим значение /(Af) в точке. Тогда полное приращение функции можно записать в следующем виде: где а символы означают, что частные производные вычислены в точке Afo. Отсюда Здесь величины jfi, ^ суть направляющие косинусы вектора. Так как векторы МоМ и I сонаправлены, то их направляющие косинусы одинаковы: Так как M Afo, осгавая сь все время на прямой, параллельной вектору 1, то углы постоянные потому Окончательно из равенств (7) и (8) получаем Эамуан ис 1. Частные производные, являются производными функции и по направлениям координатныхосей ссчлвешне нно- Пример 3. Найти производную функции по направлению к точке Вектор имеет длину. Его направляющие косинусы: По формуле (9) будем иметь Тот факт, что, означает, что скалярное поле в точке в данном направлении возраста- Для плоского поля производная по направлению I в точке вычисляется по формуле где а - угол, образованный вектором I с осью Ох. Зммчмм 2. Формула (9) для вычисления производной по направлению I в данной точке Afo остается в силе и тогда, когда точка М стремится к точке Мо по кривой, для которой вектор I является касательным в точке ПрИШр 4. Вычислить производную скалярного поля в точке Afo(l, 1). принадлежащей параболе по направлению этой кривой (в направлении возрастания абсциссы). Направлением ] параболы в точке считается направление касательной к параболе в этой точке (рис.3). Пусть касательная к параболе в точке Afo образует с осью Ох угол о. Тогда откуда направляющие косинусы касательной Вычислим значения и в точке. Имеем Теперь по формуле (10) получаем. Найти производную скалярного поля в точке по направлению окружности Векторное уравнение окружности имеет вид. Находим единичный вектор т касательной к окружности Точке соответствует значение параметра Значение г в точке Afo будет равно Отсюда получаем направляющие косинусы касательной к окружности в точке Вычислим значения частных производных данного скалярного поля в точке Значит, искомая производная. Градиент скалярного поля Пусть скалярное поле определяется скалярной функцией которая предполагается дифференцируемой. Определение. Градиентом скалярного поля » в данной точке М называется вектор, обозначаемый символом grad и и определяемый равенством Ясно, что этот вектор зависиткак от функции /, так и отточки М, в которой вычисляется ее производная. Пусгь 1 - единичный вектор в направлении Тогда формулу дл я производной по направлению можно записать в следующем виде: . тем самым производная от функ ии и по направлению 1 равна скалярному произведению градиента функ ии и(М) на орт 1° направления I. 2.1. Основные свойства градиента Теорема 1. Градиент скалярного поля перпендикулярен к поверхности уровня (или к линии уровня, если поле плоское). (2) Проведем через произвольную точку М поверхность уровня и = const и выберем на этой поверхности гладкую кривую L, проходящую через точку М (рис. 4). Пусть I - векгор, касательный к кривой L в точке М. Так как на поверхности уровня и(М) = и(М|) для любой точки Мj е L, то С другой стороны, = (gradu, 1°). Поэтому. Это означает, что векторы grad и и 1° ортогональны, Итак, векгор grad и ортогонален к любой касательной к поверхности уровня в точке М. Тем самым он ортогонален к самой поверхности уровня в точке М. Теорема 2. Градиент направлен в сторону возрастания функции поля. Ранее мы доказали, что градиент скалярного поля направлен по нормали к поверхности уровня, которая может быть ориентирована либо в сторону возрастания функции и(М), либо в сторону ее убывания. Обозначим через п нормальк поверхности уровня, ориентированную в сторону возрастания функции ti(M), и найдем производную функции и в направлении этой нормали (рис. 5). Имеем Так как по условию рис.5 и поэтому ВЕКТОРНЫЙ АНАЛИЗ Скалярное поле Поверхности и линии уровня Производная по направлению Производная Градиент скалярного поля Основные свойства градиента Инвариантное определение градиента Правила вычисления градиента Отсюда следует, что grad и направлен в ту же сторону, что и выбранная нами нормаль п, т. е. в сторону возрастания функции и(М). Теорема 3. Длина градиента равна наибольшей производной по направлению в данной точке поля, (здесь шах $ берется по всевозможным направлениям в данной точке М паю). Имеем где - угол между векторами 1 и grad п. Так как наибольшее значени Пример 1. Найти направление наибольшего иэмонония скалярного поля в точке а также величину этого наибольшего изменения в указанной точке. Направление наибольшего изменения скалярного поля указывается вектором. Имеем так что Этот вектор определяет направление наибольшего возрастания поля в точко. Величина наибольшого изменения поля в этой точке равна 2.2. Инвариантное определение градиента Величины, характеризующие свойства изучаемого объекта и не зависящие от выбора системы координат, называются инвариантами данного объекта. Например, длина кривой - инвариант этой кривой, а угол касательной к кривой с осью Ох - не инвариант. Основываясь на доказанных выше трех свойствах градиента скалярного поля, можно дать следующее инвариантное определение градиента. Определение. Градиент скалярного поля есть вектор, направленный по нормали к поверхности уровня в сторону возрастания функции поля и имеющий длину, равную наибольшей производной по направлению (в данной точке). Пусть - единичный вектор нормали, направленный в сторону возрастания поля. Тогда Пример 2. Найти градиент расстояния - некоторая фиксированная точка, a M(x,y,z) - текущая. 4 Имеем где - единичный вектор направления. Правила вычисления градиента где с - постоянное число. Приведенные формулы получаются непосредственно из определения градиента и свойств производных. По правилу дифференцирования произведения Доказательство аналогично доказательству свойства Пусть F(и) - дифференцируемая скалярная функция. Тогда 4 По определению фадиента имеем Применим ко всем слагаемым правой части правило дифференцирования сложной функции. Получим В частности, Формула (6) следует из формулы Пример 3. Майти производную по направлению радиус-воктора г от функции По формуле (3) а по формуле В результате получим, что Пример 4. Пусть дано плоское скалярное поле - расстояния от некоторой точки плоскости до двух фиксированных точек этой плоскости. Рассмотрим произвольный эллипс с фокусами Fj и F] и докажем, что всякий луч свота, вышедший из одного фокуса эллипса, после отражения от эллипса попадает в другой его фокус. Линии уровня функции (7) суть ВЕКТОРНЫЙ АНАЛИЗ Скалярное поле Поверхности и линии уровня Производная по направлению Производная Градиент скалярного поля Основные свойства градиента Инвариантное определение градиента Правила вычисления градиента Уравнения (8) описывают семейство эллипсов с фокусами в точках F) и Fj. Согласно результату примера 2 имеем Тем самым градиент заданного поля равен вектору PQ диагонали ромба, построенного на ортах г? и радиус-векторов. проведенных к точке Р(х, у) из фокусов F| и Fj, и значит, лежит на биссектрисе угла можду этими радиус-векторами (рис. 6). По тооромо 1 градиент PQ перпендикулярен к эллипсу (8) в точке. Следова- Рис.6 тельно. нормаль к эллипсу (8) в любой ого точке делит пополам угол между радиус-векторами, проведенными в эту точку. Отсюда и из того, что угол падения равон углу отражения, получаем: луч света, вышедший из одного фокуса эллипса, отразившись от него, непременно попадает в другой фокус этого эллипса.

Градиент функции – векторная величина, нахождение которой связано с определением частных производных функции. Направление градиента указывает путь наискорейшего роста функции от одной точки скалярного поля к иной.

Инструкция

1. Для решения задачи на градиент функции применяются способы дифференциального исчисления, а именно нахождение частных производных первого порядка по трем переменным. При этом предполагается, что сама функция и все ее частные производные владеют свойством непрерывности в области определения функции.

2. Градиент – это вектор, направление которого указывает направление максимально стремительного возрастания функции F. Для этого на графике выбираются две точки M0 и M1, которые являются концами вектора. Величина градиента равна скорости возрастания функции от точки M0 к точке M1.

3. Функция дифференцируема во всех точках этого вектора, следственно, проекциями вектора на координатных осях являются все ее частные производные. Тогда формула градиента выглядит дальнейшим образом:grad = (?F/?х) i + (?F/?y) j + (?F/?z) k, где i, j, k – координаты единичного вектора. Иными словами, градиент функции – это вектор, координатами которого являются ее частные производные grad F = (?F/?х, ?F/?y, ?F/?z).

4. Пример1.Пускай задана функция F = sin(х z?)/y. Требуется обнаружить ее грaдиент в точке (?/6, 1/4, 1).

5. Решение.Определите частные производные по всякой переменной: F’_х = 1/y соs(х z?) z?;F’_y = sin(х z?) (-1) 1/(y?);F’_z = 1/y соs(х z?) 2 х z.

6. Подставьте знаменитые значения координат точки:F’_x = 4 соs(?/6) = 2 ?3; F’_y = sin(?/6) (-1) 16 = -8; F’_z = 4 соs(?/6) 2 ?/6 = 2 ?/?3.

7. Примените формулу градиента функции:grаd F = 2 ?3 i – 8 j + 2 ?/?3 k.

8. Пример2.Обнаружьте координаты градиента функции F = y arсtg (z/x) в точке (1, 2, 1).

9. Решение.F’_х = 0 аrсtg (z/х) + y (аrсtg(z/х))’_х = y 1/(1 + (z/х)?) (-z/х?) = -y z/(х? (1 + (z/х)?)) = -1;F’_y = 1 аrсtg(z/х) = аrсtg 1 = ?/4;F’_z = 0 аrсtg(z/х) + y (аrсtg(z/х))’_z = y 1/(1 + (z/х)?) 1/х = y/(х (1 + (z/х)?)) = 1.grаd = (-1, ?/4, 1).

Градиент скалярного поля является векторной величиной. Таким образом, для его нахождения требуется определить все компоненты соответствующего вектора, исходя из познаний о разделении скалярного поля.

Инструкция

1. Прочитайте в учебнике по высшей математике, что собой представляет градиент скалярного поля. Как вестимо, данная векторная величина имеет направление, характеризующееся максимальной скоростью спада скалярной функции. Такой толк данной векторной величины обосновывается выражением для определения ее компонент.

2. Помните, что всякий вектор определяется величинами его компонент. Компоненты вектора являются реально проекциями этого вектора на ту либо другую координатную ось. Таким образом, если рассматривается трехмерное пространство, то у вектора должно быть три компоненты.

3. Запишите, как определяются компоненты вектора, являющегося градиентом некоторого поля. Вся из координат такого вектора равна производной скалярного потенциала по переменной, координата которой рассчитывается. То есть, если нужно вычислить «иксовую» компоненту вектора градиента поля, то надобно продифференцировать скалярную функцию по переменной «икс». Обратите внимание, что производная должна быть частная. Это обозначает, что при дифференцировании остальные переменные, не участвующие в нем, надобно считать константами.

4. Напишите выражение для скалярного поля. Как знаменито, данный термин подразумевает собой каждого лишь скалярную функцию нескольких переменных, являющихся также скалярными величинами. Число переменных скалярной функции ограничено размерностью пространства.

5. Продифференцируйте отдельно скалярную функцию по всякой переменной. В результате у вас получится три новые функции. Впишите всякую функцию в выражение для вектора градиента скалярного поля. Всякая из полученных функций реально является показателем при единичном векторе данной координаты. Таким образом, финальный вектор градиента должен выглядеть как многочлен с показателями в виде производных функции.

При рассмотрении вопросов, включающих представление градиента, почаще каждого функции воспринимают как скалярные поля. Следственно нужно ввести соответствующие обозначения.

Вам понадобится

  • – буман;
  • – ручка.

Инструкция

1. Пускай функция задается тремя доводами u=f(x, y, z). Частную производную функции, на пример по х, определяют как производную по этому доводу, полученную при фиксировании остальных доводов. Для остальных доводов подобно. Обозначения частной производной записывается в виде: дf/дх = u’x …

2. Полный дифференциал будет равен du=(дf/дх)dx+ (дf/дy)dy+(дf/дz)dz.Частные производные дозволено понимать, как производные по направлениям координатных осей. Следственно появляется вопрос о нахождении производной по направлению заданного вектора s в точке M(x, y, z) (не забывайте, что направление s задает единичный вектор-орт s^o). При этом вектор-дифференциал доводов {dx, dy, dz}={дscos(альфа), дsсоs(бета), дsсоs(гамма)}.

3. Рассматривая вид полного дифференциала du, дозволено сделать итог, что производная по направле-нию s в точке М равна:(дu/дs)|M=((дf/дх)|M)соs(альфа)+ ((дf/дy)|M) соs(бета) +((дf/дz)|M) соs(гамма).Если s= s(sx,sy,sz), то направляющие косинусы {соs(альфа), соs(бета), соs(гамма)} вычисляются (см. рис.1а).

4. Определение производной по направлению, считая точку М переменной, дозволено переписать в виде скалярного произведения: (дu/дs)=({дf/дх, дf/дy,дf/дz}, {соs(альфа), соs(бета), соs(гамма)})=(grad u, s^o). Данное выражение будет объективно для скалярного поля. Если рассматривается легко функ-ция, то gradf – это вектор, имеющий координаты, совпадающие с частными производными f(x, y, z).gradf(x,y,z)={{дf/дх, дf/дy, дf/дz}=)=(дf/дх)i+(дf/дy)j +(дf/дz)k. Тут (i, j, k) – орты координатных осей в прямоугольной декартовой системе координат.

5. Если применять дифференциальный вектор-оператор Гамильтона набла, то gradf дозволено записать, как умножение этого вектора-оператора на скаляр f (см. рис. 1б). С точки зрения связи gradf c производной по направлению, равенство (gradf, s^o)=0 допустимо, если эти векторы ортогональны. Следственно gradf зачастую определяют, как направление быстрейшего метаморфозы скалярного поля. А с точки зрения дифференциальных операций (gradf – одна из них), свойства gradf в точности повторяют свойства дифференцирования функций. В частности, если f=uv, то gradf=(vgradu+u gradv).

Видео по теме

Градиент это инструмент, в графических редакторах исполняющий заливку силуэта плавным переходом одного цвета в иной. Градиент может придать силуэту результат объема, имитировать освещение, блики света на поверхности предмета либо результат заката на заднем плане фотографии. Данный инструмент имеет широкое использование, следственно для обработки фотографий либо создания иллюстраций дюже значимо обучится им пользоваться.

Вам понадобится

  • Компьютер, графический редактор Adobe Photoshop, Corel Draw, Paint.Net либо иной.

Инструкция

1. Откройте в программе изображение либо сделайте новое. Сделайте силуэт либо выделите надобную область на изображении.

2. Включите инструмент градиент на панели инструментов графического редактора. Разместите курсор мышки на точку внутри выделенной области либо силуэта, в которой будет начинаться 1-й цвет градиента. Нажмите и удерживайте левую клавишу мышки. Перемещайте курсор в точку, в которой градиент должен перейти в конечный цвет. Отпустите левую клавишу мышки. Выделенный силуэт заполнит заливка градиентом.

3. Градиент у дозволено задать прозрачность, цвета и их соотношение в определенной точке заливки. Для этого откройте окно редактирования градиента. Дабы открыть окно редактирования в Photoshop – кликните по примеру градиента в панели «Параметры».

4. В открывшемся окне в виде примеров отображаются доступные варианты градиентной заливки. Дабы отредактировать один из вариантов выберите его кликом мышки.

5. В нижней части окна отображается пример градиента в виде широкой шкалы, на которой расположены ползунки. Ползунки обозначают точки, в которых градиент должен иметь заданные колляции, а в интервале между ползунками цвет равномерно переходит из заданного в первой точке к цвету 2-й точки.

6. Ползунки, которые расположены в верхней части шкалы задают прозрачность градиента. Дабы изменить прозрачность кликните по необходимому ползунку. Под шкалой появится поле, в которое введите необходимую степень прозрачности в процентах.

7. Ползунки в нижней части шкалы задают цвета градиента. Кликнув по одному из них, вы сумеете предпочесть надобный цвет.

8. Градиент может иметь несколько цветов перехода. Дабы задать еще один цвет – кликните по свободному месту на нижней части шкалы. На ней появится еще один ползунок. Задайте для него необходимый цвет. Шкала отобразит пример градиента с еще одной точкой. Вы можете передвигать ползунки, удерживая их с поддержкой левой клавиши мышки, дабы добиться необходимого сочетания.

9. Градиент ы бывают нескольких типов, которые могут придать форму плоским силуэтам. Скажем, дабы придать окружности форму шара применяется радиальный градиент, а дабы придать форму конуса – конусовидный. Дабы придать поверхности иллюзию выпуклости дозволено воспользоваться зеркальным градиентом, а ромбовидный градиент может применяться для создания бликов.

Видео по теме

Видео по теме