Орбитальный телескоп Хаббл: история великих открытий. Самые невероятные факты о телескопе «Хаббл Создатель современного телескопа который находится на мкс

К настоящему времени развитие оптики и астрономии привело к разнообразию и применяемых систем телескопов. Виды телескопов различают по назначению, по применяемой оптической схеме и по устройству монтировки.

По назначению телескопы бывают визуальные и фотографические, последние подразделяются на инфракрасные, телескопы видимого диапазона, ультрафиолетовые и рентгеновские. Существуют также солнечные телескопы и внезатменные коронографы – инструменты, позволяющие получить изображение солнечной короны. По применяемой оптической схеме все разновидности телескопов можно разделить на линзовые (рефракторы), зеркальные (рефлекторы) и зеркально-линзовые (катадиоптрики). Монтировка телескопа бывает неподвижная (с внешним перенаправлением света), азимутальная (с вертикальным и горизонтальным поворотом) и экваториальная (с поворотом относительно небесной сферы). Кроме оптических, возможны также радио- и нейтринные телескопы, но смотреть ни в те, ни в другие нельзя и вся информация получается электронной обработкой сигналов с различных датчиков.

Звёздные телескопы профессиональной астрономии в настоящее время достигли апертуры 8 – 11 м. По своему конструктивному исполнению это рефлекторы для съемки в прямом фокусе, из-за малых полей не оснащенные никакой промежуточной оптикой. Целью их является наивысшее разрешение при как можно большей светосиле, что ведет к необходимости подстраивать форму главного зеркала под атмосферные флуктуации.

Такая, как её называют, адаптивная оптика, впервые возникла в 1980-е годы применительно к боевым лазерным системам, предназначенным для уничтожения спутников, гражданское её применение началось в телескопах VLT Европейской Южной обсерватории, установленных в Чили. Зеркала всех пяти телескопов этой группы, имеющие апертуру 8,3 метра могут быстро деформироваться на небольшую величину с помощью системы гидравлических домкратов, размещенных с их тыльной стороны. Величина деформаций рассчитывается ЭВМ в реальном времени исходя из искажений тестового изображения “искусственной звезды”, создаваемой в верхних слоях атмосферы установленным на телескопе инфракрасным лазером.

Чуть в стороне от тестового изображения тем же зеркалом создается рабочее, идущее на исследовательские задачи.
В двух телескопах имени Кека, установленных на гавайской обсерватории США и имеющих апертуру свыше 11 м применяется аналогичный принцип компенсации атмосферных искажений, но вместо цельного зеркала изображение на фотоприемнике создается целой системой из десятков сегментов, каждый из которых поворачивается собственным домкратом. Эти инструменты уже превзошли по разрешающей способности орбитальный телескоп имени Хаббла, но существуют европейские и американские проекты телескопов с сегментированными зеркалами апертурой 30 – 60 метров.

Тем не менее, если в общем случае апертура в 20 метров для оптического телескопа пока недостижима, то для некоторых частных задач она может составлять десятки и сотни метров. Речь о сведении в одну точку изображений с двух разных телескопов, нацеленных на один и тот же участок неба. Такой принцип, называемый в астрономии фокусом Кудэ, используется в задачах звёздной интерферометрии, позволяющей восстанавливать изображения отдельных звёзд и точно измерять диаметр их дисков, недостижимый никакими другими способами. Тем не менее, ни простая фотосъёмка, ни тем более визуальное наблюдение по такой схеме ничего не даст – необходима компьютерная обработка серии снимков. Примером действующего звёздного интерферометра является австралийская система с расстоянием 188 метров между телескопами.

Для широкопольных наблюдений и целенаправленного поиска новых объектов, таких как новые звёзды, астероиды и транснептуновые объекты применяются виды телескопов преимущественно катадиоптрической схемы – Шмидта, Гамильтона или Максутова. Не последнюю роль в организации подобных поисков играет и скорость экспозиции, передачи данных и их обработки на ЭВМ. Определенный шанс на успех есть и у любителя, вооруженного цифровой зеркальной фотокамерой с 200 – 300 мм телеобъективом. Причем по фокусному расстоянию, а не по апертуре – профессионалы никогда не смогут одновременно наблюдать везде, а вспыхнувшая Новая часто видна и в обыкновенный бинокль.

Рефракторы в профессиональной звёздной астрономии остались теперь только в виде упомянутых телеобъективов и искателей более крупных инструментов. Огромные ахроматы прошлого и визуально и фотографически полностью перекрываются более чем скромными рефлекторами и катадиоптриками. Апохроматы в основном задействуют на поиске космического мусора и околоземных объектов в диапазоне самых малых апертур – здесь они оказываются выигрышными.

Солнечные телескопы, как следует из их названия, предназначены для наблюдения одного-единственного космического объекта. Наблюдения по понятным причинам ведутся днем и имеют свою специфику. Прежде всего, необходимо ослабить яркость создаваемого солнечным телескопом изображения в несколько сот тысяч раз. Эта задача решается установкой апертурных солнечных фильтров.



Кроме того, вся оптика отражательных солнечных телескопов не имеет покрытия, что однако, обеспечивает ослабление яркости только в десятки раз. Другая часть достигается применением сверхнизкой светосилы, растягивающей итоговое изображение в круг диаметром до метра и выше при умеренной апертуре самого телескопа. Последняя впрочем не должна быть слишком малой величиной и обеспечивать разрешающую способность, достаточную для различения объектов на поверхности Солнца, разделенных промежутком не более нескольких сотен километров.

Сочетание этих, во многом противоречивых требований, приводит к тому, что солнечный телескоп часто выполняют неподвижным, для чего строится специальная башня. В этом случае лучи дневного светила направляются в башню с помощью целостата – специальной системы из двух плоских зеркал превосходящих по размеру апертуру телескопа.

Специфика наблюдений с Земли приводит к тому, что мы не можем наблюдать обратную сторону Солнца пока она не повернется к нам примерно через 29 дней. Этот недостаток полностью устранен в космической системе SOHO, в которой три солнечных телескопа размещены на станциях, выведенных на гелиоцентрическую орбиту и размещенных в вершинах подвижного равностороннего треугольника.

“Родственниками” солнечных телескопов являются внезатменные коронографы – устройства еще более узкой специализации. Ни солнечные пятна ни гранулы в них смотреть нельзя, зато тусклое сияние короны отсекается одновременно и от атмосферной засветки и от мощного свечения самого диска.

Коронограф был изобретен французским оптиком Лио в 1862 году, но по-настоящему им заинтересовались в годы Второй мировой войны, когда по форме солнечной короны предсказывали магнитные бури. Реализация порядком забытой идеи стала секретной – до начала 50-х годов. С изобретением узкополосных фильтров, настроенных на линии поглощения спектров водорода и кальция коронограф стал общедоступным и может быть продан любому желающему.

Ультрафиолетовые телескопы по устройству близки к обычным рефлекторам. Земная атмосфера пропускает ультрафиолетовое излучение ближней области, с длиной волны до 350 нм, поэтому наземные ультрафиолетовые телескопы размещают в высокогорных районах. Объектами их исследования могу быть как отдельные звёзды, так и галактики, которые регистрируются по выбросам ультрафиолетового излучения при процессах, происходящих в их ядрах. Вследствие меньшей длины волны оптика ультрафиолетовых телескопов должна быть выполнена с большей точностью, чем телескопов видимого диапазона.

Лимитирующим элементом по светопропусканию являются преломляющие детали, которые в случае небольших объективов выполняются из плавленого кварца. В этом случае допускается остаточный хроматизм. Создание широкопольных ультрафиолетовых телескопов представляет собой серьезную технологическую проблему, так как в обычных камерах Шмидта и Ричи-Кретьена используются корректирующие линзы, которые из кварца изготовить затруднительно. Одним из путей решения является т.н. зеркальная камера Шмидта, в которой корректирующий элемент выполнен в виде наклонно установленного зеркала с профилем, близким к плоскому. Такая система иногда устанавливается на спутниках, но очень чувствительна к разъюстировке.

Инфракрасные телескопы дают уникальную возможность наблюдать звёзды сквозь пылевые облака, ослабляющие их видимый блеск в видимом диапазоне на несколько сот звёздных величин. Это связано с тем, что излучение нагревает частицы пыли и переизлучается ей уже в инфракрасном диапазоне. В частности, такой метод наблюдений позволил построить замкнутую орбиту звезды, близко обращающейся вокруг центра нашей Галактики, что дало достоверное доказательство того, что центральный объект является черной дырой.

Кроме звёзд, объектами наблюдений в такие телескопы могут являться планеты солнечной системы и их спутники, что дает возможность уточнить структуру их поверхности по характеру её теплового излучения. Большая проницающая способность позволяет использовать инфракрасные телескопы для поиска транснептуновых объектов и околоземных астероидов.

Вследствие специфики теплового излучения инфракрасный телескоп всегда должен быть сильно охлажден. Криостат – устройство, поддерживающее телескоп при постоянной отрицательной температуре, ранее выполнялось на основе “сухого льда” - твердой углекислоты, затем стал использоваться жидкий азот и в настоящее время – жидкий гелий. Инфракрасная матрица – очень дорогостоящее устройство, стоимость которого доходит до миллионов $. Оптика инфракрасных телескопов преимущественно зеркальная, вследствие большей длины волны теплового излучения чем видимого, оптика может быть выполнена с меньшей степенью точности. Крупнейший наземный инфракрасный телескоп установлен на Европейской Южной Обсерватории в Чили и имеет алюминиевое зеркало с адаптивной оптикой общей апертурой 12 м.

Рентгеновские телескопы в большинстве случаев выводятся в космос, так как земная атмосфера сильно ослабляет рентгеновские лучи. Другой спецификой принимаемого излучения является практическое отсутствие его преломления большинством прозрачных материалов и отражение металлами только под очень острым углом. Это вынуждает применять фокусирование высокоэнергетических рентгеновских квантов либо с помощью внеосевых параболических зеркал со специальным покрытием, либо использовать принцип кодирующей апертуры.

В первом случае зеркало размещается почти по касательной к падающему волновому фронту и в большинстве случаев покрывается золотом или иридием. Иногда может использоваться диэлектрическое покрытие, доходящее до нескольких сотен слоёв. При использовании кодирующей апертуры изображение на фотоприемнике создается пропусканием исследуемого излучения через матрицу, образованную прозрачными и непрозрачными ячейками, размещенными в определенной последовательности. Восстанавливает полученное изображение бортовая ЭВМ космического аппарата.

Таким образом, виды телескопов современной астрономия представляют собой мощные средства наблюдений, которые в последние годы приводят к поистине революционным открытиям.

2.Астрономи́ческая обсервато́рия

Астрономи́ческая обсервато́рия - учреждение, предназначенное для проведения систематических наблюдений небесных тел; возводится обыкновенно на высокой местности, с которой открывался бы большой кругозор во все стороны. Каждая обсерватория оборудована телескопами, как оптическими, так и работающими в других областях спектра (Радиоастрономия).

Космические обсерватории играют большую роль в развитии астрономии. Величайшие научные достижения последних десятилетий в опираются на знания, полученные при помощи космических аппаратов.

Большой объём информации о небесных телах не доходит до земли т.к. ей мешает атмосфера которой мы дышим. Большая часть инфракрасного и ультрафиолетового диапазона, а также рентгеновские и гамма-лучи космического происхождения недоступны для наблюдений с поверхности нашей планеты. Для изучения космоса в этих диапазонах необходимо вывести телескоп за пределы атмосферы. Результаты исследований полученные с помощью космических обсерваторий перевернули представление человека о вселенной.

Первые космические обсерватории существовали на орбите недолго, но развитие технологий позволило создать новые инструменты для исследования вселенной. Современный космический телескоп - уникальный комплекс который разрабатывается и эксплуатируется совместно учеными многих стран в течении нескольких десятков лет. Наблюдения полученные с помощью многих космических телескопов доступны для бесплатного использования учёными и просто любителями астрономии со всего мира.

Инфракрасные телескопы

Предназначены для проведения космических наблюдений в инфракрасном диапазоне спектра. Недостатком этих обсерваторий является их большой вес. На орбиту помимо телескопа приходится выводить охладитель, который должен уберечь ИК-приёмник телескопа от фонового излучения - инфракрасных квантов, испускаемых самим телескопом. Это привело к тому, что за всю историю космических полётов на орбите работало очень мало инфракрасных телескопов.

Хаббловский космический телескоп

Изображение ESO

24 апреля 1990 г. с помощью американского шаттла "Дискавери" STS-31 была выведена на орбиту крупнейшая околоземная обсерватория - космический телескоп "Хаббл" весом более 12т. Этот телескоп результат совместного проекта НАСА и Европейского космического агентства. Работа космического телескопа "Хаббл" рассчитана на длительный срок. полученные с его помощью данные доступны на сайте телескопа для бесплатного пользования астрономами всего мира.

Ультрафиолетовые телескопы

Озоновый слой окружающий нашу атмосферу практически полностью поглощает ультрафиолетовое излучение Солнца и звёзд, поэтому УФ-кванты можно регистрировать только за его пределами. Интерес астрономов к УФ-излучению обусловлен тем, что в этом диапазоне спектра излучает самая распространённая молекула во Вселенной - молекула водорода. Первый ультрафиолетовый телескоп-рефлектор с диаметром зеркала 80 см был выведен на орбиту в августе 1972 г. на совместном американо-европейском спутнике "Коперник".

Рентгеновские телескопы

Рентгеновские лучи доносят до нас из космоса информацию о мощных процессах связанных с рождением звёзд. Высокая энергия рентгеновских и гамма-квантов позволяет регистрировать их по одиночке, с точным указанием времени регистрации. Благодаря тому, что детекторы рентгеновского излучения относительно легки в изготовлении и имеют небольшой вес, рентгеновские телескопы устанавливались на многих орбитальных станциях и даже межпланетных космических кораблях. Всего в космосе побывало более сотни таких инструментов.

Гамма-телескопы

Гамма-излучение имеет близкую природу к рентгеновскому излечению. Для регистрации гамма-лучей используются методы схожие с методами применяемыми для исследований рентгеновского излучения. Поэтому зачастую на космических телескопах исследуют одновременно как рентгеновские, так и гамма-лучи. Гамма-излучение принимаемое этими телескопами доносит до нас информацию о процессах, происходящих внутри атомных ядер, а также о превращениях элементарных частиц в космосе.

Электромагнитный спектр, исследуемый в астрофизике

Длинны волн Область спектра Прохождение сквозь земную атмосферу Приемники излучения Методы исследования
<=0,01 нм Гамма-излучение Сильное поглощение
0,01-10 нм Рентгеновское излучение Сильное поглощение
O, N2, O2, O3 и другими молекулами воздуха
Счетчики фотонов, ионизационные камеры, фотоэмульсии, люминофоры В основном внеатмосферные (космические ракеты, искусственные спутники)
10-310 нм Далекий ультрафиолет Сильное поглощение
O, N2, O2, O3 и другими молекулами воздуха
Внеатмосферные
310-390 нм Близкий ультрафиолет Слабое поглощение Фотоэлектронные умножители, фотоэмульсии С поверхности Земли
390-760 нм Видимое излучение Слабое поглощение Глаз, фотоэмульсии, фотокатоды, полупроводниковые приборы С поверхности Земли
0,76-15 мкм Инфракрасное излучение Частые полосы поглощения H2O, CO2, и др. Частично с поверхности Земли
15 мкм - 1 мм Инфракрасное излучение Сильное молекулярное поглощение Болометры, термопары, фотосопротивления, специальные фотокатоды и фотоэмульсии С аэростатов
> 1 мм Радиоволны Пропускается излучение с длинной волны около 1 мм, 4,5 мм, 8 мм и от 1 см до 20 м Радиотелескопы С поверхности Земли

Космические обсерватории

Агентство, страна Название обсерватории Область спектра Год запуска
CNES & ESA, Франция, Европейский Союз COROT Видимое излучение 2006
CSA, Канада MOST Видимое излучение 2003
ESA & NASA, Европейский Союз, США Herschel Space Observatory Инфракрасное 2009
ESA, Европейский Союз Darwin Mission Инфракрасное 2015
ESA, Европейский Союз Gaia mission Видимое излучение 2011
ESA, Европейский Союз International Gamma Ray
Astrophysics Laboratory (INTEGRAL)
Гамма-излучение, Рентген 2002
ESA, Европейский Союз Planck satellite Микроволновое 2009
ESA, Европейский Союз XMM-Newton Рентген 1999
IKI & NASA, Россия, США Spectrum-X-Gamma Рентген 2010
IKI, Россия RadioAstron Радио 2008
INTA, Испания Low Energy Gamma Ray Imager (LEGRI) Гамма-излучение 1997
ISA, INFN, RSA, DLR & SNSB Payload for Antimatter Matter
Exploration and Light-nuclei Astrophysics (PAMELA)
Particle detection 2006
ISA, Израиль AGILE Рентген 2007
ISA, Израиль Astrorivelatore Gamma ad
Immagini LEggero (AGILE)
Гамма-излучение 2007
ISA, Израиль Tel Aviv University Ultraviolet
Explorer (TAUVEX)
Ультрафиолет 2009
ISRO, Индия Astrosat Рентген, Ультрафиолет, Видимое излучение 2009
JAXA & NASA, Япония, США Suzaku (ASTRO-E2) Рентген 2005
KARI, Корея Korea Advanced Institute of
Science and Technology Satellite 4 (Kaistsat 4)
Ультрафиолет 2003
NASA & DOE, США Dark Energy Space Telescope Видимое излучение
NASA, США Astromag Free-Flyer Элементарные частицы 2005
NASA, США Chandra X-ray Observatory Рентген 1999
NASA, США Constellation-X Observatory Рентген
NASA, США Cosmic Hot Interstellar
Spectrometer (CHIPS)
Ультрафиолет 2003
NASA, США Dark Universe Observatory Рентген
NASA, США Fermi Gamma-ray Space Telescope Гамма-излучение 2008
NASA, США Galaxy Evolution Explorer (GALEX) Ультрафиолет 2003
NASA, США High Energy Transient Explorer 2
(HETE 2)
Гамма-излучение, Рентген 2000
NASA, США Hubble Space Telescope Ультрафиолет, Видимое излучение 1990
NASA, США James Webb Space Telescope Инфракрасное 2013
NASA, США Kepler Mission Видимое излучение 2009
NASA, США Laser Interferometer Space
Antenna (LISA)
Гравитационное 2018
NASA, США Nuclear Spectroscopic Telescope
Array (NuSTAR)
Рентген 2010
NASA, США Rossi X-ray Timing Explorer Рентген 1995
NASA, США SIM Lite Astrometric Observatory Видимое излучение 2015
NASA, США Spitzer Space Telescope Инфракрасное 2003
NASA, США Submillimeter Wave Astronomy
Satellite (SWAS)
Инфракрасное 1998
NASA, США Swift Gamma Ray Burst Explorer Гамма-излучение, Рентген, Ультрафиолет,
Видимое излучение
2004
NASA, США Terrestrial Planet Finder Видимое излучение, Инфракрасное
NASA, США Wide-field Infrared Explorer
(WIRE)
Инфракрасное 1999
NASA, США Wide-field Infrared Survey
Explorer (WISE)
Инфракрасное 2009
NASA, США WMAP Микроволновое 2001

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в Липперсгей . Также создание телескопа приписывается его современнику Захарию Янсену .

История

Годом изобретения телескопа, а вернее зрительной трубы , считают 1607 год , когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге . Тем не менее в выдаче патента ему было отказано в силу того, что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара , уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент . Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году . В «Дополнениях в Вителлию», опубликованных в 1604 г., Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причём как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи , датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилео Галилей . В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями . Тем не менее, с его помощью Галилей сделал ряд открытий.

Название «телескоп» предложил в 1611 году греческий математик Иоаннис Димисианос (Giovanni Demisiani-Джованни Демизиани) для одного из инструментов Галилея, показанного на загородном симпосии Академии деи Линчеи . Сам Галилей использовал для своих телескопов термин лат. perspicillum .

«Телескоп Галилея», Музей Галилея (Флоренция)

В 20-м веке также наблюдалось развитие телескопов, которые работали в широком диапазоне длин волн от радио до гамма-лучей. Первый специально созданный радиотелескоп вступил в строй в 1937 году. С тех пор было разработано огромное множество сложных астрономических приборов.

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке , снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр . Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра . В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом , а сам телескоп превращается в астрограф . Телескоп фокусируется при помощи фокусёра (фокусировочного устройства).

По своей оптической схеме большинство телескопов делятся на:

  • Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.
  • Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало .
  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало, а для компенсации его аберраций служат линзы.

Это может быть одиночная линза (система Гельмута), система линз (Волосова-Гальперна-Печатниковой, Бэйкер-Нана), ахроматический мениск Максутова (одноимённые системы), или планоидная асферическая пластина (системы Шмидта, Райта). Иногда главному зеркалу придают форму эллипсоида (некоторые менисковые телескопы), сплюснутого сфероида (камера Райта), или просто немного фигуризованную неправильную поверхность. Этим удаётся остаточные аберрации системы.

Кроме того, для наблюдений за Солнцем профессиональные астрономы используют специальные солнечные телескопы , отличающиеся конструктивно от традиционных звёздных телескопов.

Радиотелескопы

Радиотелескопы Very Large Array в штате Нью-Мексико, США

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприёмник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приёмников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры . При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array ). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy ), включённый в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм - 30 ) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей : высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению . Примером такой системы может служить телескоп CACTUS .

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды , инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может служить Южнополярный телескоп (англ. South Pole Telescope ), установленный на южном географическом полюсе , работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики , позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы , или в воздух на самолётах или стратосферных баллонах . Но наибольшие результаты достигаются с выносом телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом : φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа

Космические телескопы - это, как правило, телескопы, работающие за пределами атмосферы Земли и, тем самым, не утруждающие себя просвечиванием через эту атмосферу. Самым известным космическим телескопом на сегодняшний день является космический телескоп Хаббл, открывший сотни экзопланет, показавший множество живописных галактик, космических событий и расширивший горизонты нашего взгляда в космос. На смену Хабблу придет космический телескоп Джеймса Вебба, который будет запущен в космос в 2018 году и зеркало которого будет превышать диаметр зеркала Хаббла почти в три раза. После Джеймса Вебба ученые планируют отправить в космос Космический телескоп высокого разрешения (HDST), но это пока только в планах. Как бы то ни было, на долю космических телескопов приходится и будет приходиться большая часть наших открытий в глубоком космосе.

Мы представляем себе космос как темное, холодное и тихое место, где нет ничего, кроме бесконечной Вселенной вокруг. Однако насчет тишины космического пространства можно поспорить. По всей Вселенной перемещаются тысячи самых разных радиосигналов. Их испускают различные космические объекты и большая часть таких сигналов — это не более, чем шум и помехи. Но встречаются среди них и те, что к помехам отнести никак не получается. И недавно зарегистрировал огромный китайский радиотелескоп.

Космические телескопы

Вести наблюдения за планетами, звездами, туманностями, галактиками прямо из космоса – о такой возможности астрономы мечтали давным-давно. Дело в том, что атмосфера Земли, защищающая человечество от многих космических неприятностей, одновременно и мешает вести наблюдения за отдаленными небесными объектами. Облачный покров, нестабильность самой атмосферы вносят искажения в получаемые изображения, а то и вообще делают астрономические наблюдения невозможными. Поэтому, как только на орбиту стали посылать специализированные спутники, астрономы стали настаивать на выводе в космос астрономических инструментов.

Первенец «Хаббл». Решающий прорыв в этом направлении произошел в апреле 1990 года, когда один из «шаттлов» вывел в космос телескоп «Хаббл» весом 11 т. Уникальный прибор длиной 13,1 м и диаметром главного зеркала 2,4 м, который обошелся налогоплательщикам США в 1,2 млрд долларов, был назван в честь знаменитого американского астронома Эдвина Хаббла, который первым заметил, что галактики разбегаются от некоего центра во все стороны.

Космический телескоп «Хаббл» и сделанный им снимок столпов творения – рождения новых звёзд в туманности Орел

Работа «Хаббла» началась с неприятностей. Через два месяца после того, как он был выведен на орбиту высотой 613 км, стало очевидно, что основное зеркало сделано с браком. Его кривизна у краев отличалась от расчетной на несколько микрон – пятидесятую часть толщины человеческого волоса. Тем не менее и этой малости оказалось достаточно, чтобы «Хаббл» оказался близорук, а получаемое им изображение расплывчато.

Поначалу недостатки изображения пытались исправить на Земле с помощью компьютерных корректирующих программ, но это помогало слабо. Тогда было решено провести уникальную операцию по исправлению «близорукости» прямо в космосе, прописав «Хабблу» специальные «очки» – корректирующую оптическую систему.

И вот ранним утром 2 декабря 1993 года семеро астронавтов отправились на «шаттле» «Индевор» проводить уникальную операцию. На Землю они вернулись через 11 суток, сделав во время пяти выходов в открытый космос, казалось бы, невозможное – телескоп «прозрел». Это стало очевидным после получения от него очередной порции снимков. Их качество существенно возросло.

За годы своего полета космическая обсерватория совершила несколько десятков тысяч оборотов вокруг Земли, «накрутив» при этом миллиарды километров.

Телескоп «Хаббл» позволил наблюдать уже более 10 тысяч небесных объектов. Два с половиной триллиона байтов информации, собранной телескопом, хранится на 375 оптических дисках. И она все еще продолжает накапливаться. Телескоп позволил открыть существование черных дыр в космосе, выявил наличие атмосферы у спутника Юпитера – Европы, открыл новые спутники Сатурна, позволил заглянуть в самые удаленные уголки космоса…

Во время второго «техосмотра» в феврале 1997 года на телескопе заменили спектрограф высокого разрешения, спектрограф слабых объектов, устройство наводки на звезды, магнитофон для записи информации и электронику солнечных батарей.

По плану «Хаббл» должен был «выйти на пенсию» в 2005 году. Однако он исправно работает и по сию пору. Тем не менее ему уже готовится почетная отставка. На смену ветерану в 2015 году должен заступить на космическую вахту новый уникальный космический телескоп, названный в честь Джеймса Уэбба – одного из директоров NASA. Это при нем астронавты впервые высадились на Луну.

Что день грядущий нам готовит? Поскольку новый телескоп будет иметь составное зеркало диаметром 6,6 м и общей площадью 25 кв. м, полагают, что «Уэбб» будет в 6 раз мощнее своего предшественника. Астрономы смогут наблюдать объекты, которые светятся в 10 млрд раз слабее, чем самые тусклые звезды, видимые невооруженным глазом. Они смогут увидеть звезды и галактики, которые были свидетелями младенчества Вселенной, а также определить химический состав атмосфер планет, вращающихся вокруг далеких звезд.

В создании новой орбитальной инфракрасной обсерватории принимают участие более 2000 специалистов из 14 стран. Работы над проектом начались еще в 1989 году, когда NASA предложило мировому научному сообществу проект «Космический телескоп следующего поколения» (Next Generation Space Telescope). Диаметр главного зеркала планировался не меньше 8 м, но в 2001 году амбиции пришлось умерить и остановиться на 6,6 м – зеркало больших размеров не влезает в ракету «Ариан-5», а «шаттлы», как известно, летать уже перестали.

«Джеймс Уэбб» полетит в космос под прикрытием «звездного зонта». Его щит в форме гигантского цветка укроет телескоп от звездного излучения, мешающего разглядеть отдаленные галактики. Огромный зонт площадью 150 кв. м будет состоять из пяти слоев полиамидной пленки, каждый из которых не толще человеческого волоса. Шесть лет эту пленку испытывали на прочность, проверяя, сможет ли она устоять против бомбардировки микрометеоритами. Три внутренних слоя покроют ультратонким слоем алюминия, а два внешних обработают кремниевым сплавом. Солнцезащитный экран будет функционировать по принципу зеркала, отражая излучение Солнца и прочих светил обратно в космос.

Как известно, в космосе настолько холодно, что за полгода телескоп охладится до температуры ниже –225 °C. Но и она слишком высока для MIRI – прибора для наблюдений в среднем инфракрасном диапазоне (Mid-Infrared Instrument), состоящего из камеры, коронографа и спектрометра. MIRI придется охлаждать дополнительно с помощью холодильного оборудования на основе гелия до температуры –266 °C – всего на 7 °C выше абсолютного нуля.

Кроме того, астрономы постарались найти такую точку в пространстве, где телескоп может находиться годами, развернувшись «спиной» одновременно к Земле, Луне и Солнцу, закрывшись от их излучения экраном. За год, который уйдет на один оборот вокруг Солнца, телескоп сможет обозреть все небесное пространство.

Недостатком этой точки либрации Лагранжа L2 является ее удаленность от нашей планеты. Так что если вдруг у телескопа обнаружится какая-то неисправность, как это было «Хабблом», исправить ее в ближайшие годы вряд ли удастся – лететь ремонтной бригаде ныне просто не на чем; корабли нового поколения появятся лет через пять, не раньше.

Это заставляет ученых, конструкторов и испытателей, доводящих ныне «Уэбб» до кондиции, быть предельно внимательными. Ведь телескоп Уэбба будет работать на расстоянии в 2500 раз превышающем то, на котором работал «Хаббл», и почти в четыре раза превышающем удаленность Луны от Земли.

Главное зеркало диаметром 6,6 м в собранном виде не поместится ни на одном из существующих космических аппаратов. Поэтому оно составлено из более мелких деталей, чтобы могло легко складываться. В итоге телескоп состоит из 18 гексагональных зеркал меньшего размера, с длиной сторон 1,32 м. Зеркала выполнены из легкого и прочного металла бериллия. Каждое из 18 зеркал, плюс три резервных, весит около 20 кг. Как говорится, почувствуйте разницу между ними и тонной, которую весит 2,4-метровое зеркало «Хаббла».

Зеркала шлифуются и полируются с точностью до 20 нанометров. Звездный свет будет отражаться главным зеркалом на вторичное, установленное над ним, которое при необходимости может автоматически регулироваться. Через отверстие в центре главного зеркала свет вновь будет отражаться – уже на приборы.

На Земле вновь отшлифованные зеркала помещаются в гигантскую морозильную камеру NASA, где созданы космические условия – лютый холод и вакуум. Снизив температуру до –250 °C, специалисты должны убедиться в том, что зеркала примут ожидаемую форму. Если нет, то их снова подшлифуют, стараясь добиться идеала.

Готовые зеркала затем позолотят, поскольку именно золото наилучшим образом отражает тепловые инфракрасные лучи. Далее зеркала снова заморозят, они пройдут финальное тестирование. Затем телескоп соберут окончательно и проверят его не только на четкость работы всех узлов, но и на устойчивость к вибрациям и перегрузкам, неизбежным при запуске ракеты в космос.

Поскольку золото поглощает излучение синей части спектра видимого света, телескоп Уэбба не сможет сфотографировать небесные объекты такими, какими они воспринимаются невооруженным глазом. Зато сверхчувствительные датчики MIRI, NIRCam, NIRSpec и FGS-TFI могут обнаружить инфракрасный свет с длинами волн от 0,6 до 28 мкм, что позволит сфотографировать первые звезды и галактики, образовавшиеся в результате Большого Взрыва.

Ученые предполагают, что первые звезды сформировались через несколько сотен миллионов лет после Большого Взрыва, а затем эти гиганты с излучением в миллионы раз сильнее солнечного взорвались как сверхновые. Проверить, так ли это на самом деле, можно лишь заглянув на самые окраины Вселенной.

Впрочем, новый космический телескоп предназначен не только для наблюдения за самыми удаленными и, следовательно, древними объектами Вселенной. Ученых также интересуют пылевые области галактики, где и поныне зарождаются новые звезды. Инфракрасное излучение способно проникать сквозь пыль, и благодаря «Джеймсу Уэббу» астрономы смогут постичь процессы формирования звезд и сопровождающих их планет.

Ученые надеются не только зафиксировать сами планеты, вращающиеся вокруг звезд, удаленных от нас на бесконечные световые годы, но и проанализировать свет от экзопланет земного типа с целью определения состава их атмосферы. Например, пары воды и СО2 посылают специфические сигналы, по которым можно будет установить, есть ли на удаленных от нас планетах жизнь.

«Радиоастрон» готовится к работе. У этого космического телескопа оказалась непростая судьба. Работа над ним началась более десяти лет тому назад, но довести ее до конца все никак не удавалось – то денег не было, то преодоление тех или иных технических трудностей требовало больше времени, чем полагали сначала, то был очередной перерыв в космических запусках…

Но вот, наконец, в июле 2011 года спутник «Спектр-Р» с полезной нагрузкой около 2600 кг, из которых 1500 кг пришлось на раскрывающуюся параболическую антенну, а остальное на электронный комплекс, содержащий приемники космического излучения, усилители, блоки управления, преобразователи сигналов, систему передачи научных данных и т. д., был запущен.

Сначала ракета-носитель «Зенит-2SБ», а затем разгонный блок «Фрегат-2СБ» вывели спутник на вытянутую орбиту вокруг Земли высотой около 340 тыс. км.

Казалось бы, создатели аппаратуры из НПО имени Лавочкина вместе с главным конструктором Владимиром Бабышкиным могли вздохнуть свободно. Да не тут-то было!..

«Ракета-носитель отработала без замечаний, – рассказывал на пресс-конференции Владимир Бабышкин. – Затем были два включения разгонного блока. Орбита аппарата несколько необычна с точки зрения выведения, потому там достаточно много ограничений, которым мы должны были удовлетворять»…

В итоге оба включения разгонного блока проходили вне зоны видимости наземных станций с территории России, и это добавило волнений наземной команде. Наконец, телеметрия показала: и первое, и второе включения прошли благополучно, все системы отработали нормально. Открылись солнечные батареи, и дальше система управления удерживала аппарат в заданном положении.

Поначалу операция по раскрытию антенны, которая состоит из 27 лепестков, находившихся во время транспортировки в сложенном состоянии, намечалась на 22 июля. Процесс раскрытия лепестков занимает приблизительно 30 минут. Однако сразу процесс не пошел, и завершено раскрытие параболической антенны радиотелескопа было лишь 23 июля. К осени «зонтик» диаметром 10 м был раскрыт полностью. «Это позволит получать изображения, координаты и угловые перемещения различных объектов Вселенной с исключительно высоким разрешением», – подвели итоги первой стадии эксперимента специалисты.

После раскрытия зеркала приемной антенны космическому радиотелескопу требуется около трех месяцев для синхронизации с земными радиотелескопами. Дело в том, что работать он должен не в одиночку, а «в связке» с наземными приборами. Планируется, что на Земле в качестве синхронных радиотелескопов будут использованы два стометровых радиотелескопа в Грин-Бэнке, Западная Виргиния, США, и в Эффельсберге, Германия, а также знаменитая радиообсерватория Аресибо, в Пуэрто-Рико.

Направленные одновременно на один и тот же звездный объект, они будут работать в режиме интерферометра. То есть, говоря попросту, с помощью компьютерных методов обработки информации полученные данные сведут воедино, и полученная картина будет соответствовать той, что могла быть получена от радиотелескопа, диаметр антенны которого был бы на 340 тыс. км больше диаметра Земли.

Наземно-космический интерферометр с такой базой обеспечит условия для получения изображений, координат и угловых перемещений различных объектов Вселенной с исключительно высоким разрешением – от 0,5 угловой миллисекунды до нескольких микросекунд. «Телескоп будет обладать исключительно высоким угловым разрешением, что позволит получить ранее недостижимые по детальности изображения исследуемых космических объектов», – подчеркнул академик РАН Николай Кардашев, директор Академического космического центра ФИАН, головной организации по комплексу научной аппаратуры спутника «Радиоастрон».

Для сравнения: разрешение, которого можно добиться с помощью «Радиоастрона», будет как минимум в 250 раз выше, чем можно добиться с помощью наземной сети радиотелескопов, и более чем в 1000 раз выше, чем у космического телескопа «Хаббл», работающего в оптическом диапазоне.

Все это позволит исследовать окрестности сверхмассивных черных дыр в активных галактиках, рассмотреть в динамике строение областей, где образуются звезды в нашей галактике Млечный Путь; изучать нейтронные звезды и черные дыры в нашей Галактике; изучить структуру и распределение межзвездной и межпланетной плазмы; построить точную модель гравитационного поля Земли, а также провести еще множество других наблюдений и следований.

Из книги Занимательная анатомия роботов автора Мацкевич Вадим Викторович

Космические роботы В 1822 году великий английский поэт Дж. Байрон писал в своей поэме «Дон Жуан»: «Уж скоро мы, природы властелины, и на Луну пошлём свои машины»… Гениальное пророчество Дж. Байрона сбылось уже во второй половине XX века. Мы являемся очевидцами невиданного

Из книги Пилотируемые полеты на Луну автора Шунейко Иван Иванович

Космические программы США Беспилотные космические аппараты для исследования космического пространства и использования космической техники в практических целях.В 70-х гг. основное внимание уделяется исследованию внутренних планет Меркурий и Венера, а также планеты

Из книги Битва за звезды-2. Космическое противостояние (часть I) автора Первушин Антон Иванович

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

4.2. Космические летные испытания пилотируемых кораблей Apollo-7, 8, 9, 10 Apollo-7 11 октября 1968 г. в 15 ч 02 мин 45 сек по Гринвичу был произведен запуск на орбиту ИСЗ ракетой-носителем Saturn IB основного блока корабля Apollo весом 18 777 кг с экипажем в составе Уолтер Ширра, Дойн Эйзел и Уолтер

Из книги Промышленное освоение космоса автора Циолковский Константин Эдуардович

Крылатые космические корабли «М-2» и «HL-10» Бесславный финал программы «Дайна-Сор» не охладил энтузиазма тех американских конструкторов, которые связывали будущее космонавтики с развитием авиации. С начала 1960-х годов всякая уважающая себя западная авиационная фирма

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

Крылатые космические системы «Saturn» В начале 60-х наиболее перспективной ракетой-носителем в США считалась ракета «Сатурн» («Saturn»), разработкой и совершенствованием которой занимался Центр космических полетов имени Дж. Маршалла в Хантсвилле (штат Алабама), возглавляемый

Из книги Взлёт 2011 04 автора Автор неизвестен

Воздушно-космические аппараты Мясищева С поручением оценить перспективы создания воздушно-космического аппарата, способного обеспечить планирующий спуск, Сергей Королев обратился не только к Цыбину, но и к Владимиру Мясищеву.С 1958 года в ОКБ-23 начались работы по

Из книги Обитаемые космические станции автора Бубнов Игорь Николаевич

«Космические» снаряды Джеральда Бюлля Как известно, все новое - это хорошо забытое старое. На примере материала предыдущей главы мы убедились, что развитие техники во многом основывается на этом общеизвестном соображении.Раз за разом конструкторская мысль на очередном

Из книги Новые космические технологии автора Фролов Александр Владимирович

Космические путешествия* Пусть не сетуют на меня любители художественного произведения. Тут такого не увидите. Цель этого труда заинтересовать картинами будущего космического существования человечества, побудить тем читателя к его достижению и соответствующей работе.

Из книги Эта удивительная подушка автора Гильзин Карл Александрович

§ 2.16 Вращающиеся звёзды и космические дуги Нужно следовать мудрости природы, которая как бы больше всего боится произвести что-нибудь излишнее или бесполезное, но зато часто одну вещь обогащает многими действиями. Николай Коперник, "О вращении небесных сфер" Выше мы

Из книги автора

§ 2.21 Радиогалактики и другие космические аномалии Таким образом, перед нами открывается одно из самых ярких откровений Мироздания, что все эти "монстры": радиогалактики, квазары и другие аномальные объекты излучений - ничто иное, как обычные галактики, оптическое

Из книги автора

§ 5.11 Космические лучи - путь к звёздам …Планета есть колыбель разума, но нельзя вечно жить в колыбели. …Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе всё околосолнечное

Из книги автора

Из книги автора

ДЛЯ ЧЕГО НУЖНЫ ОРБИТАЛЬНЫЕ КОСМИЧЕСКИЕ СТАНЦИИ? Обитаемые космические станции как искусственные спутники Земли будут двигаться по орбитам вне атмосферы Земли. В связи с этим все научные и технические задачи, которые будут решать околоземные орбитальные станции, можно

Из книги автора

Александр Владимирович Фролов Новые космические технологии Существует только один истинный закон – тот, который помогает стать свободным. Ричард Бах «Чайка по имени Джонатан Ливингстон»