Единицы измерения радиоактивности. В каких единицах измеряется радиация? Предельные нормы Как выглядят часто встречаемые радиоактивные предметы

Радиоактивность вещества характеризуется количеством распадов в единицу времени. Чем большее число распадов происходит в единицу времени, тем выше активность вещества. Скорость радиоактивного распада определяется величиной периода полураспада (Т), т. е. промежутком времени, в течение которого активность радиоактивного элемента уменьшается наполовину. Для каждого изотопа скорость радиоактивного распада, как будет показано ниже, весьма важный показатель для гигиенической оценки условий труда и выбора специальных мер защиты.

Для измерения радиоактивности принята единица - распад в секунду, а также внесистемная единица - кюри (к), т. е. активность такого количества радиоактивного вещества, в котором происходит 3,7·10 10 распадов в 1 секунду. В практике применяются единицы, производные от кюри: милликюри (мк), микрокюри (мкк). Концентрация радиоактивных веществ в воздухе и воде измеряется в кюри на 1 л - к/л.

Гамма-активность выражается в миллиграмм-эквивалентах радия. Он представляет собой гамма-эквивалент радиоактивного препарата, ү-излучение которого при тождественных условиях создает такую же мощность дозы, что и ү-излучение 1 мг радия Государственного эталона радия СССР при платиновом фильтре толщиной 0,5 мм. Точечный источник в 1 мг радия в равновесии с продуктами распада после фильтрации через платиновый фильтр толщиной 0,5 мм платины создает на расстоянии 1 см в воздухе мощность дозы 8,4 р в час.

За единицу дозы рентгеновых лучей и ү-лучей принят рентген (р). Один рентген - доза, которая в 1 см 2 воздуха при 0° и давлении 760 мм рт. ст. образует ионы с суммарным зарядом в одну электростатическую единицу количества электричества каждого знака. В практике пользуются производными рентгена: 1 р = 10 3 мр (миллирентген) = 10 6 мкр (микрорентген). Для характеристики распределения дозы во времени вводится понятие мощности дозы: р/час, р/мин, р/сек, мр/час, мр/мин, мр/сек и т. д.

Раньше в качестве единицы поглощенной дозы и дозы излучения (для всех видов излучения) использовали физический эквивалент рентгена (фэр). Фэр - доза любого ионизирующего излучения, при которой энергия, поглощенная в 1 г вещества, равна потере энергии на ионизацию, создаваемую в нем дозой 1 р рентгеновых лучей или у-лучей; 1 фэр для воздуха равен 84 эрг/г, для биологических тканей- 93 эрг/г.

При одной и той же поглощенной дозе биологический эффект разных видов излучения неодинаков; его можно выразить следующими величинами (относительная биологическая эффективность - обэ):

Таким образом, биологический эффект воздействия а-излучения в 10 раз, тепловых нейтронов - в 3 раза, быстрых нейтронов и протонов - в 10 раз больше, чем эффект воздействия у- и рентгеновых лучей.

Различный биологический эффект в основном зависит от плотности ионизации, создаваемой в тканях тем или иным ионизирующим излучением. По предложению Международного конгресса радиологов в 1953 г. за единицу поглощенной дозы энергии ионизирующего излучения в единице массы облучаемого вещества была принята единица рад. Для всех видов ионизирующей радиации рад соответствует поглощенной энергии 100 эрг на 1 г любого вещества. Для учета биологического действия различных видов излучения введена другая единица - биологический эквивалент рада - бэр. За 1 бэр принимается такая поглощенная доза любого вида ионизирующих излучений, которая вызывает такой же биологический эффект, что и 1 рад рентгеновых или ү-лучей.

Термин «относительная биологическая эффективность» используется обычно при сравнительной оценке действия излучений в радиобиологии. Так как значение обэ зависит от целого ряда причин - энергии излучения, критериев биологического действия и др., при решении задач радиационной безопасности используют так называемые коэффициенты качества - КК, которые представляют собой величины, показывающие зависимость биологического эффекта хронического облучения организма от передачи энергии на единицу длины пробега частицы или кванта. Для определения поглощенной дозы в бэр (Дбэр) необходимо дозу в рад (Драд) умножить на коэффициент качества и коэффициент распределения (КР), учитывающий влияние неоднородного распределения радиоактивных изотопов.

Дбэр = Драд · КК · КР.

Загрязненность рабочих поверхностей и оборудования, рук, спецодежды и других предметов α- и β-излучателями выражается в числе частиц, вылетающих с площади 1 см 2 в 1 минуту.

Кого-то одно слово радиация повергает в ужас! Сразу заметим, что она есть везде, существует даже понятие естественный радиационный фон и это часть нашей жизни! Радиация возникла за долго до нашего появления и к некоторому уровню её, человек адаптировался.

Чем измеряется радиация?

Активность радионуклида измеряют в Кюри (Ки, Си) и Беккерелях (Бк, Bq). Количество радиоактивного вещества обычно определяют не единицами массы (грамм, килограмм и т.д.), а активностью данного вещества.

1 Бк = 1 распад в секунду
1Ки = 3,7 х 10 10 Бк

Поглощённая доза (количество энергии ионизирующего излучения, поглощенное единицей массы какого-либо физического объекта, например, тканями организма). Грей (Гр/Gy) и Рад (рад/rad).

1 Гр = 1 Дж/кг
1 рад = 0.01Гр

Мощность дозы (полученная доза за единицу времени). Грей в час (Гр/ч); Зиверт в час (Зв/ч); Рентген в час (Р/ч).

1 Гр/ч = 1 Зв/ч = 100 Р/ч (бета и гамма)
1 мк Зв/ч = 1 мкГр/ч = 100 мкР/ч
1 мкР/ч = 1/1000000 Р/ч

Эквивалентная доза (единица поглощенной дозы, умноженная на коэффициент, учитывающий неодинаковую опасность разных видов ионизирующего излучения.) Зиверт (Зв, Sv) и Бэр (бер, rem) — «биологический эквивалент рентгена».

1 Зв = 1Гр = 1Дж/кг (бета и гамма)
1 мкЗв = 1/1000000 Зв
1 бер = 0.01 Зв = 10мЗв

Перевод величин:

1 Зивет (Зв, Sv) = 1000 миллизивертов (mSv, мЗв) = 1000000 микрозивертов (uSv, мкЗв) = 100 бер = 100000 миллибэр.

Безопасный радиационный фон?

Наиболее безопасным радиационным излучением для человека считается уровень, не превышающий 0,2 микрозиверта в час (или 20 микрорентген в час), это тот случай, когда «радиационный фон в норме» . Менее безопасен уровень, не превышающий 0,5 мкЗв/час .

Не малую роль для здоровья человека играет не только сила, но и время воздействия. Так более низкое по силе излучение оказывающие свое влияние более продолжительное время, может быть опаснее сильного, но кратковременного облучения.

Накопление радиации.

Также существует такое понятие какнакопленная доза радиации. На протяжении жизнь человек может накопить 100 — 700 мЗв , это считается нормой. (в районах с повышенным радиоактивным фоном: например, в горных районах, уровень накопленной радиации будет держатся в верхних пределах). Если в год человек накапливает около3-4 мЗв/год эта доза считается средней и безопасна для человека.

Следует также отметить что по мимо естественного фона на жизнь человека могут влиять и другие явления. Так, например, «вынужденные облучения»: рентген лёгких, флюорография — даёт до 3 мЗв. Снимок у зубного врача — 0.2мЗв. Сканеры в аэропортах 0.001 мЗв за одну проверку. Полёт на самолёте — 0.005-0.020 миллизивертов в час, получаемая доза зависит от времени полёта, высоты, и месте пассажира, так у иллюминатора доза облучения самая большая. Также дозу радиации можно получить и дома от безопасных казалось бы . Свою немалую лепту в облучение людей вносит и , скапливающийся в мало проветриваемых помещениях.

Виды радиоактивного излучения и их краткое описание:

Альфа — имеет небольшую проникающ ую способность (можно защититься буквально листиком бумаги), однако последствия для облучённых, живых тканей, самые страшные и разрушительные. Обладает низкой по сравнению с другими ионизирующими излучениями скоростью, равной 20 000 км/с, а также наименьшее расстояния воздействия. Большую опасность представляет прямой контакт и попадание внутрь человеческого тела.

Нейтронное — состоит из потоков нейтронов. Основные и сточники; атомные взрывы, ядерные реакторы . Наносит серьезный ущерб . От высокой проникающей способности , нейтронного излучения , возможно защитится материалами с высоким содержанием водорода (имеющие в своей химической формуле атомы водорода). Обычно применяют воду, парафин, полиэтилен. Скорость = 40 000 км /с .

Бета — появляется в процессераспада ядер атомов радиоактивных элементов. Без проблем проходит через одежду и частично живые ткани. Проходя более плотные вещества (такие, как металл) вступает в активное взаимодействие с ними, как следствие, основная часть энергии теряется, передаваясь элементам вещества. Так металлический лист всего в несколько миллиметров может полностью остановить бета-излучение. Может достигать 300 000 км/с .

Гамма — испускается при переходах между возбуждёнными состояниями атомных ядер. Пронзает одежду, живые ткани, чуть труднее проходит сквозь плотные вещества. Защитой будет значительная толщина стали или бетона. При этом действие гаммы, намного слабее (примерно в 100 раз) чем бета и десятки тысяч раз альфа излучения. Преодолевает значительные расстояния со скоростью 300 000 км/с.

Рентгеновское — схоже сгаммой, но у неё меньшая способность проникновения, из-за более длинной волны.

© ВЫЖИВАЙ.РУ

Post Views: 19 918

5. Дозы излучения и единицы измерения

Действие ионизирующих излучений представляет собой сложный процесс. Эффект облучения зависит от величины поглощенной дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для его количественной оценки введены специальные единицы, которые делятся на внесистемные и единицы в системе СИ. Сейчас используются преимущественно единицы системы СИ. Ниже в таблице 10 дан перечень единиц измерения радиологических величин и проведено сравнение единиц системы СИ и внесистемных единиц.

Таблица 10.

Основные радиологические величины и единицы

Величина Наименование и обозначение
единицы измерения
Соотношения между
единицами
Внесистемные Си
Активность нуклида, А Кюри (Ки, Ci) Беккерель (Бк, Bq) 1 Ки = 3.7·10 10 Бк
1 Бк = 1 расп/с
1 Бк=2.7·10 -11 Ки
Экспозицион-
ная доза, X
Рентген (Р, R) Кулон/кг
(Кл/кг, C/kg)
1 Р=2.58·10 -4 Кл/кг
1 Кл/кг=3.88·10 3 Р
Поглощенная доза, D Рад (рад, rad) Грей (Гр, Gy) 1 рад-10 -2 Гр
1 Гр=1 Дж/кг
Эквивалентная доза, Н Бэр (бэр, rem) Зиверт (Зв, Sv) 1 бэр=10 -2 Зв
1 Зв=100 бэр
Интегральная доза излучения Рад-грамм (рад·г, rad·g) Грей- кг (Гр·кг, Gy·kg) 1 рад·г=10 -5 Гр·кг
1 Гр·кг=105 рад·г

Для описания влияния ионизирующих излучений на вещество используются следующие понятия и единицы измерения:
Активность радионуклида в источнике (А) . Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени (dN) к величине этого интервала (dt) :

Единица активности в системе СИ - Беккерель (Бк).
Внесистемная единица - Кюри (Ки).

Число радиоактивных ядер N(t) данного изотопа уменьшается со временем по закону:

N(t) = N 0 exp(-tln2/T 1/2) = N 0 exp(-0.693t /T 1/2)

где N 0 - число радиоактивных ядер в момент времени t = 0, Т 1/2 -период полураспада - время, в течение которого распадается половина радиоактивных ядер.
Массу m радионуклида активностью А можно рассчитать по формуле:

m = 2.4·10 -24 × M ×T 1/2 × A,

где М - массовое число радионуклида, А - активность в Беккерелях, T 1/2 - период полураспада в секундах. Масса получается в граммах.
Экспозиционная доза (X). В качестве количественной меры рентгеновского и -излучения принято использовать во внесистемных единицах экспозиционную дозу, определяемую зарядом вторичных частиц (dQ), образующихся в массе вещества (dm) при полном торможении всех заряженных частиц:

Единица экспозиционной дозы - Рентген (Р). Рентген - это экспозиционная доза рентгеновского и
-излучения, создающая в 1куб.см воздуха при температуре О°С и давлении 760 мм рт.ст. суммарный заряд ионов одного знака в одну электростатическую единицу количества электричества. Экспозиционной дозе 1 Р
соответствует 2.08·10 9 пар ионов (2.08·10 9 = 1/(4.8·10 -10)). Если принять среднюю энергию образования 1 пары ионов в воздухе равной 33.85 эВ, то при экспозиционной дозе 1 Р одному кубическому сантиметру воздуха передается энергия, равная:
(2.08·10 9)·33.85·(1.6·10 -12) = 0.113 эрг,
а одному грамму воздуха:
0.113/ возд = 0.113/0.001293 = 87.3 эрг.
Поглощение энергии ионизирующего излучения является первичным процессом, дающим начало последовательности физико-химических преобразований в облученной ткани, приводящей к наблюдаемому радиационному эффекту. Поэтому естественно сопоставить наблюдаемый эффект с количеством поглощенной энергии или поглощенной дозы.
Поглощенная доза (D) - основная дозиметрическая величина. Она равна отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме:

Единица поглощенной дозы - Грей (Гр). Внесистемная единица Рад определялась как поглощенная доза любого ионизирующего излучения, равная 100 эрг на 1 грамм облученного вещества.
Эквивалентная доза (Н) . Для оценки возможного ущерба здоровью человека в условиях хронического облучения в области радиационной безопасности введено понятие эквивалентной дозы Н, равной произведению поглощенной дозы D r , созданной облучением - r и усредненной по анализируемому органу или по всему организму, на весовой множитель w r (называемый еще - коэффициент качества излучения)
(таблица 11).

Единицей измерения эквивалентной дозы является Джоуль на килограмм. Она имеет специальное наименование Зиверт (Зв).

Таблица 11.

Весовые множители излучения

Вид излучения и диапазон энергий

Весовой множитель

Фотоны всех энергий
Электроны и мюоны всех энергий
Нейтроны с энергией < 10 КэВ
Нейтроны от 10 до 100 КэВ
Нейтроны от 100 КэВ до 2 МэВ
Нейтроны от 2 МэВ до 20 МэВ
Нейтроны > 20 МэВ
Протоны с энергий > 2 МэВ (кроме протонов отдачи)
альфа-частицы, осколки деления и другие тяжелые ядра

Влияние облучения носит неравномерный характер. Для оценки ущерба здоровью человека за счет различного характера влияния облучения на разные органы (в условиях равномерного облучения всего тела) введено понятие эффективной эквивалентной дозы Е эфф применяемое при оценке возможных стохастических эффектов - злокачественных новообразований.
Эффективная доза равна сумме взвешенных эквивалентных доз во всех органах и тканях:

где w t - тканевый весовой множитель (таблица 12), а H t -эквивалентная доза, поглощенная в
ткани - t. Единица эффективной эквивалентной дозы - Зиверт.

Таблица 12.

Значения тканевых весовых множителей w t для различных органов и тканей.

Ткань или орган w t Ткань или орган w t
Половые железы 0.20 Печень 0.05
Красный костный мозг 0.12 Пищевод 0.05
Толстый кишечник 0.12 Щитовидная железа 0.05
Легкие 0.12 Кожа 0.01
Желудок 0.12 Поверхность костей 0.01
Мочевой пузырь 0.05 Остальные органы 0.05
Молочные железы 0.05

Коллективная эффективная эквивалентная доза. Для оценки ущерба здоровью персонала и населения от стохастических эффектов, вызванных действием ионизирующих излучений, используют коллективную эффективную эквивалентную дозу S, определяемую как:

где N(E) - число лиц, получивших индивидуальную эффективную эквивалентную дозу Е. Единицей S является человеко-Зиверт
(чел-Зв).
Радионуклиды - радиоактивные атомы с данным массовым числом и атомным номером, а для изомерных атомов - и с данным определенным энергетическим состоянием атомного ядра. Радионуклиды
(и нерадиоактивные нуклиды) элемента иначе называют его изотопами.
Помимо названных выше величин для сравнения степени радиационного повреждения вещества при воздействии на него различных ионизирующих частиц с разной энергией используется также величина линейной передачи энергии (ЛПЭ), определяемая соотношением:

где - средняя энергия, локально переданная среде ионизирующей частицей вследствие столкновений на элементарном пути dl.
Пороговая энергия обычно относится к энергии электрона. Если в акте столкновения первичная заряженная частица образует -электрон с энергией больше , то эта энергия не включается в значение dE, и -электроны с энергией больше рассматриваются как самостоятельные первичные частицы.
Выбор пороговой энергии является произвольным и зависит от конкретных условий.
Из определения следует, что линейная передача энергии является некоторым аналогом тормозной способности вещества. Однако между этими величинами есть различие. Заключается оно в следующем:
1. ЛПЭ не включает энергию, преобразованную в фотоны, т.е. радиационные потери.
2. При заданном пороге ЛПЭ не включает в себя кинетическую энергию частиц, превышающую .
Величины ЛПЭ и тормозной способности совпадают, если можно пренебречь потерями на тормозное излучение и

Таблица 13.

Средние значения величины линейной передачи энергии L и
пробега R для электронов, протонов и альфа-частиц в мягкой ткани.
Частица Е, МэВ L, кэВ/мкм R, мкм
Электрон 0.01 2.3 1
0.1 0.42 180
1.0 0.25 5000
Протон 0.1 90 3
2.0 16 80
5.0 8 350
100.0 4 1400
α -частица 0.1 260 1
5.0 95 35

По величине линейной передачи энергии можно определить весовой множитель данного вида излучения (таблица 14)

Таблица 14.

Зависимость весового множителя излучения w r от линейной
передачи энергии ионизирующего излучения L для воды.
L, кэВ/мкм < 3/5 7 23 53 > 175
w r 1 2 5 10 20

Предельно допустимые дозы облучения

По отношению к облучению население делится на 3 категории.
Категория А облучаемых лиц или персонал (профессиональные работники) - лица, которые постоянно или временно работают непосредственно с источниками ионизирующих излучений.
Категория Б облучаемых лиц или ограниченная часть населения - лица, которые не работают непосредственно с источниками ионизирующего излучения, но по условиям проживания или размещения рабочих мест могут подвергаться воздействию ионизирующих излучений.
Категория В облучаемых лиц или население - население страны, республики, края или области.
Для категории А вводятся предельно допустимые дозы -наибольшие значения индивидуальной эквивалентной дозы за календарный год, при которой равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами. Для категории Б определяется предел дозы.
Устанавливается три группы критических органов:
1 группа - все тело, гонады и красный костный мозг.
2 группа - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталики глаз и другие органы, за исключением тех, которые относятся к 1 и 3 группам.
3 группа - кожный покров, костная ткань, кисти, предплечья, голени и стопы.
Дозовые пределы облучения для разных категорий лиц даны в таблице 15.

Таблица 15.

Дозовые пределы внешнего и внутреннего облучения (бэр/год).

Группы критических органов
1 2 3
Категория А, предельно допустимая доза (ПДД) 5 15 30
Категория Б, предел дозы(ПД) 0.5 1.5 3

Помимо основных дозовых пределов для оценки влияния излучения используют производные нормативы и контрольные уровни. Нормативы рассчитаны с учетом непревышения дозовых пределов ПДД (предельно допустимая доза) и ПД (предел дозы). Расчет допустимого содержания радионуклида в организме проводят с учетом его радиотоксичности и непревышения ПДД в критическом органе. Контрольные уровни должны обеспечивать такие низкие уровни облучения, какие можно достичь при соблюдении основных дозовых пределов.
Для категории А (персонала) установлены:
- предельно допустимое годовое поступление ПДП радионуклида через органы дыхания;
- допустимое содержание радионуклида в критическом органе ДС А;
- допустимая мощность дозы излучения ДМД А;
- допустимая плотность потока частиц ДПП А;
- допустимая объемная активность (концентрация) радионуклида в воздухе рабочей зоны ДК А;
- допустимое загрязнение кожных покровов, спецодежды и рабочих поверхностей ДЗ А.
Для категории Б (ограниченной части населения) установлены:
- предел годового поступления ПГП радионуклида через органы дыхания или пищеварения;
- допустимая объемная активность (концентрация) радионуклида ДК Б в атмосферном воздухе и воде;
- допустимая мощность дозы ДМД Б;
- допустимая плотность потока частиц ДПП Б;
- допустимое загрязнение кожных покровов, одежды и поверхностей ДЗ Б.
Численные значения допустимых уровней в полном объеме содержатся в
"Нормах радиационной безопасности".

Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.

Основными источниками радиации являются:

  • природные радиоактивные вещества вокруг и внутри нас - 73%;
  • медицинские процедуры (рентгеноскопия и прочие) - 13%;
  • космическое излучение - 14%.

Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.

Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов. Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%. В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.

mos-rep.ru

Энергетика - это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.

Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.

В каких единицах измеряется радиация

Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт - эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.

С прочими единицами измерения можно ознакомиться в таблице.

Термин

Единицы измерения

Соотношение единиц

Определение

В системе СИ

В старой системе

Активность

Беккерель, Бк

1 Ки = 3,7 × 10 10 Бк

Число радиоактивных распадов в единицу времени

Мощность дозы

Зиверт в час, Зв/ч

Рентген в час, Р/ч

1 мкР/ч = 0,01 мкЗв/ч

Уровень излучения в единицу времени

Поглощённая доза

Радиан, рад

1 рад = 0,01 Гр

Количество энергии ионизирующего излучения, переданное определённому объекту

Эффективная доза

Зиверт, Зв

1 рем = 0,01 Зв

Доза облучения, учитывающая различную

чувствительность органов к радиации

Последствия облучения

Воздействие радиации на человека называют облучением. Основное его проявление - острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта - угрожает жизни облучённого.

Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.

Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.

Последствия облучения могут проявить себя через длительное время - это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний. Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней. И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.

Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего. Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более. Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей .


chornobyl.in.ua

Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую). Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии - 161 мкЗв/ч. После взрыва на уровень радиации доходил до нескольких тысяч микрозивертов в час.

За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом - визиографом. Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв, одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Излучение от бетонных стен - до 3 мЗв в год.

При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.

Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:

  • 750 000 мкЗв - кратковременное незначительное изменение состава крови;
  • 1 000 000 мкЗв - лёгкая степень лучевой болезни;
  • 4 500 000 мкЗв - тяжёлая степень лучевой болезни (погибает 50% облучённых);
  • около 7 000 000 мкЗв - смерть.

Опасны ли рентгенологические исследования


Чаще всего с облучением мы сталкиваемся во время медицинских исследований . Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.

Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03 , при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:

  • 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
  • 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
  • 80 цифровых ортопантомограмм (13–17 мкЗв);
  • 40 плёночных ортопантомограмм (25–30 мкЗв);
  • 20 компьютерных томограмм (45–60 мкЗв).

То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.

Кому нельзя облучаться

Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.

Пункт 7.18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».

Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.

Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент

Как защититься

Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.

Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и . Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.

Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.

Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, необработанный рис, чернослив.

В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.

»
При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много. Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей. Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.

До или после воздействия радиации используют пищевые добавки и препараты против радиации. Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе. Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и показан диметилсульфид.

Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.

Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.

Единица измерения Зиверт. Опасные и повседневные уровни радиации .

Зиверт (обозначение: Зв , Sv ) — единица измерения СИ эффективной и эквивалентной доз ионизирующего излучения (используется с 1979 г.). 1 зиверт — это количество энергии, поглощенное килограммом биологической ткани, равное по воздействию поглощенной дозе 1 Гр (1 Грей).

Через другие единицы измерения СИ зиверт выражается следующим образом:
1 Зв = 1 Дж/кг = 1 м 2 / с 2 (для излучений с коэффициентом качества, равным 1,0)

Равенство зиверта и грея показывает, что эффективная доза и поглощeнная доза имеют одинаковую размерность, но не означает, что эффективная доза численно равна поглощeнной дозе. При определении эффективной дозы учитывается биологическое воздействие радиации, она равна поглощённой дозе, умноженной на коэффициент качества, зависящий от вида излучения и характеризует биологическую активность того или иного вида излучения. Имеет большое значение для радиобиологии.

Единица названа в честь шведского учeного Рольфа Зиверта.

Раньше (а иногда и сейчас) использовалась единица бэр(биологический эквивалент рентгена), англ. rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы. 100 бэр равны 1 зиверту. Также верно что 100 рентген = 1 зиверт с оговоркой, что рассматривается биологическое действие рентгеновского излучения.

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Зв деказиверт даЗв daSv 10 -1 Зв децизиверт дЗв dSv
102 Зв гектозиверт гЗв hSv 10 -2 Зв сантизиверт сЗв cSv
103 Зв килозиверт кЗв kSv 10 -3 Зв миллизиверт мЗв mSv
106 Зв мегазиверт МЗв MSv 10 -6 Зв микрозиверт мкЗв µSv
109 Зв гигазиверт ГЗв GSv 10 -9 Зв нанозиверт нЗв nSv
1012 Зв теразиверт ТЗв TSv 10 -12 Зв пикозиверт пЗв pSv
1015 Зв петазиверт ПЗв PSv 10 -15 Зв фемтозиверт фЗв fSv
1018 Зв эксазиверт ЭЗв ESv 10 -18 Зв аттозиверт аЗв aSv
1021 Зв зеттазиверт ЗЗв ZSv 10 -21 Зв зептозиверт зЗв zSv
1024 Зв йоттазиверт ИЗв YSv 10 -24 Зв йоктозиверт иЗв ySv

Допустимые и смертельные дозы для человека

Миллизиверт часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).

Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апр. 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».

Естественное фоновое ионизирующее излучение в среднем равно 2,4 мЗв/год. При этом разброс значений фонового излучения в разных точках Земли составляет 1—10 мЗв/год.

При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть наступает в 50 % случаев:

  • при дозе порядка 3-5 Зв из-за повреждения костного мозга в течение 30—60 суток;
  • 10 ± 5 Зв из-за повреждения желудочно-кишечного тракта и лeгких в течение 10—20 суток;
  • > 15 Зв из-за повреждения нервной системы в течение 1—5 суток.