Фундаментальные свойства живой материи. Свойства материи Признаки живой материи биология

1.1 Питание. Пища нужна всем живым организмам, так как она служит источником энергии и других веществ, необходимых для жизнедеятельности. Растения и животные различаются главным образом по тому, как они добывают пищу.

Почти все растения способны к фотосинтезу, т.е. они сами образуют необходимые вещества, используя энергию света. Фотосинтез – одна из форм автотрофного питания:

6СО + 6Н О С Н О + 6О

хлорофилл

Животные и большинство микроорганизмов питаются по другому: они используют готовое органическое вещество, т.е. вещество других организмов. Это вещество они расщепляют с помощью ферментов и образуют вещества своего тела. Такое питание называется гетеротрофным.

1.2 Дыхание. Это процесс окисления органических веществ с выделением энергии (АТФ обнаружен во всех живых клетках).

С Н О + 6О 6СО + 6Н О + Q (кДж)

Энергия нужна для всех процессов жизнедеятельности, поэтому основная масса питательных веществ используется как источник энергии. В процессе дыхания энергия высвобождается при расщеплении некоторых высокоэнергетических соединений.

Благодаря этим двум процессам – питанию и дыханию - организм поддерживает свою целостность, т.е. упорядоченность всех процессов, протекающих в этом организме.

1.3 Раздражимость. Все живые существа способны реагировать на изменение внешней и внутренней среды. Например, на холоде кровеносные сосуды сужаются (гусиная кожа), а при высокой температуре расширяются, в результате в атмосферу выделяется избыточное тепло. Растения тянутся к свету (фотосинтез), животные тоже реагируют на опасность – еж, черепаха.

Раздражимость – это универсальное свойство живого. Оно выработалось в процессе эволюции и помогает живому организму выжить в изменившихся условиях внешней среды.



1.4 Подвижность. Животные отличаются от растений способностью перемещаться в пространстве из одного места в другое, т.е. они могут двигаться. Животным надо двигаться, чтобы добывать себе пищу.

Для растений подвижность не обязательна, т.к. они сами способны синтезировать питательные вещества. Но у растений имеет место движение внутри клеток и движение целых органов (листья комнатных растений, подсолнух). Но скорость этого движения значительно меньше, чем у животных.

В связи с этим академик Вернадский выделил два вида движения:

1 активное движение – перемещение на значительные расстояния;

2 пассивное движение – движение внутри тела.

1.5 Выделение. Выделение или экскреция – выведение из организма конечных продуктов обмена веществ. Животные потребляют много белковых веществ, поэтому шлаки, образованные из белков, это азотистые соединения.

1.6 Размножение. Продолжительность жизни у каждого организма ограничена, но все живое в целом бессмертно. Выживание вида обеспечивается сохранением главных признаков родителей у потомства, возникшего путем бесполого или полового размножения.

Существуют определенные механизмы передачи наследственной информации из поколения в поколение, причем эти механизмы одинаковы для всех видов. В этом проявляется наследственность. Но потомки, будучи похожи на родителей, всегда чем-то отличаются от них. В этом состоит явление изменчивости, основные законы которой тоже являются общими для всех видов.

Закодирована наследственная информация в молекулах ДНК и РНК.

1.7 Рост. Объекты неживой природы, например, кристаллы или сталактиты, растут, присоединяя новое вещество к наружной поверхности.

Живые организмы растут изнутри за счет питательных веществ, которые поступают в организм в процессе питания. В результате ассимиляции этих веществ образуются новые вещества, новая живая протоплазма.

Эти семь главных признаков живого более или менее выражены у любого организма и служат единственным показателем того, жив он или мертв.

В отличие от живой материи неживое под действием внешних условий разрушается.

Свойства живых организмов

2.1 Обмен веществ. Все живые организмы обладают способностью извлекать, преобразовывать и использовать энергию окружающей среды либо в виде питательных веществ, либо в форме солнечного излучения. Во внешнюю среду они возвращают продукты распада и преобразованную энергию в виде тепла. То есть организмы способны к обмену веществом и энергией с окружающей средой.

Обмен веществ является одним из существенных критериев жизни. Это свойство отражено в определении жизни, которое сформулировал Ф.Энгельс более ста лет назад:

«Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней средой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка».

В это определение вошли два важных положения:

А) жизнь тесно связана с белковыми веществами;

Б) непременным условием жизни является постоянный обмен веществ, с прекращением которого прекращается и жизнь.

Обмен веществ белкового тела имеет две стороны:

· Пластический обмен (анаболизм) – это совокупность реакций, обеспечивающих построение клетки и обновление ее состава.

· Энергетический обмен (катаболизм) – это совокупность реакций, обеспечивающих клетку энергией.

Анаболизм + катаболизм = обмен веществ (метаболизм)

Вещества, поступающие из окружающей среды в результате пластического обмена, превращаются в вещества данного организма, и из них строится тело организма. Таким образом, пластический обмен состоит из двух одновременно идущих процессов: непрерывного распада веществ – диссимиляции и непрерывного синтеза новых соединений, т.е. ассимиляции. Процессы диссимиляции и ассимиляции едины и не существуют отдельно друг от друга. В результате этих процессов живой организм все время меняется, но при этом сохраняет свою определенную структуру.

Для ассимиляции, т.е. образования нового сложного вещества, кроме «строительного материала» - разнообразных химических соединений, необходима также энергия. Эту энергию дают, в первую очередь, процессы распада, т.е. процессы диссимиляции. При этом происходит расщепление сложных органических соединений на более простые, которые окисляются до конечных продуктов, как правило, до углекислого газа и воды с выделением энергии. Все это происходит в процессе энергетического обмена – катаболизма.

Живому организму энергия требуется не только для создания новых веществ тела, но и для различных видов деятельности: работа мышц, желез, нервных клеток и др., высшим животным – для поддержания постоянной температуры тела.

Чем больше нагрузка на организм, и чем больше затрачивается энергии, тем большее количество питательных веществ должно поступать. Людям тяжелого физического труда, спортсменам при больших нагрузках необходимо усиленное питание. Несоответствие между поступающей энергией в виде питательных веществ и затрачиваемой организмом ведет к увеличению веса и заболеваниям.

Обмен веществ обеспечивает устойчивость и постоянство химического состава клетки и всего организма, а, следовательно, и их деятельность.

Динамические системы, в которых непрерывно протекают химические реакции за счет поступающих извне веществ и энергии, а продукты распада отводятся, называются открытыми системами .

Живой организм – это открытая система, т.к. он существует до тех пор, пока в него поступает пища, а также энергия из внешней среды, а некоторые продукты обмена выделяются.

Живые организмы обладают встроенной системой саморегуляции, которая поддерживает процессы жизнедеятельности и препятствует неупорядоченному распаду структур и выделению энергии. Это тесно связано с процессом обмена веществ.

Способность биологических систем противостоять изменениям и сохранять динамическое постоянство состава и свойств называется гомеостазом

Гомеостаз – относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма.

Различают: а) физиологический гомеостаз – это генетически детерминированная способность организма сохранять свой статус в изменяющихся условиях внешней среды (у млекопитающих – способность сохранять постоянство осмотического давления в клетках и рН крови);

б) гомеостаз развития - это генетически детерминированнаяспособность организма так изменять отдельные реакции, что функции организма при этом в целом сохраняются. (У человека при удалении одной почки оставшаяся выполняет двойную нагрузку)

2.2 Способность к самовоспроизведению – это второе обязательное свойство живого.

Время жизни всех живых систем, от молекулярных структур (вирусы, прионы) до высокоорганизованных многоклеточных организмов, ограничено.

Самовоспроизведение осуществляется на всех уровнях организации живой материи – от макромолекул до организма. Благодаря этому свойству клеточные структуры, клетки и организмы сходны по строению со своими предшественниками.

В основе самовоспроизведения лежит образование новых молекул и структур, на основе информации, заложенной в нуклеиновой кислоте ДНК. Самовоспроизведение тесно связано с явлением наследственности: любое живое существо рождает себе подобных.

Материальной основой генетических программ являются нуклеиновые кислоты: ДНК РНК белок

Белок является функциональным исполнительным механизмом, который регулируется нуклеиновой кислотой. Этому соответствует одно из современных определений жизни, данное в 1965 г. советским ученым М.В.Волькенштейном: «Живые тела, существующие на Земле, представляют собой открытые саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров – белков и нуклеиновых кислот».

2.3 Изменчивость – это свойство, противоположное наследственности. Оно связано с приобретением организмами новых признаков и свойств. В основе изменчивости лежат мутации – нарушение процесса самовоспроизведения ДНК. Изменчивость создает материал для естественного отбора.

2.4 Свойством живых организмов является способность к историческому развитию и изменению от простого к сложному. Этот процесс называется эволюцией. В результате эволюции возникло все многообразие живых организмов, приспособленных к определенным условиям существования.

Некоторые исследователи к основным свойствам живых организмов относят также: а)единство химического состава (98% - С, N, О, Н);

б)сложность и высокую степень организации , т.е. усложненное внутреннее строение, но в настоящее время обнаружены живые организмы, образованные одной молекулой – прионы – белки.

Основные свойства живой материи

Биологический уровень организации очень сложен, его нельзя свести к закономерностям других естественных наук. В настоящее время существуют несколько подходов к определению живого вещества:

1. Витализм – учение, основанное на признании наличия в организмах управляющей ими нематериальной составляющей сверхъестественной силы – души. Его основу составляют удивительная сложность строения и целесообразность поведения живых организмов. Сторонники данного учения считают, что жизнь является уникальным явлением, которое нельзя объяснить физико-химическими процессами. Так, еще в древности существовало представление об энтехелии, одушевляющей материю тела и направляющей поведение организма.

2. Редукционный подход – его представители считают возможным использовать законы физики и химии для анализа процессов жизнедеятельности. Они отрицают целенаправленность строения и поведения. Основу жизни – гомеостаз – объясняют действием законов неживой природы. Так, терморегуляция теплокровных существ происходит по принципу обратной связи – выделение пота при повышении температуры.

3. Живая клетка – элементарная организованная часть живой материи и сложная высокоупорядоченная система. Было установлено, что в ней непрерывно совершается синтез крупных молекул из простых и мелких – анаболические реакции, на которые затрачивается энергия, и их распад – катаболические реакции. Совокупность таких реакций в клетке и есть процесс метаболизма. Для его поддержания необходим непрерывный приток энергии.

Свойства, отличающие живое от неживого, отражающие специфику биологической формы движения материи:

– самовоспроизведение – может производиться многократно, а генетическая информация о нем закодирована в молекулах ДНК;

– регуляция процессов – происходит в химических реакциях посредством механизма обратной связи; внутри клеток реакции синтеза и распада идут с участием ферментов, синтезируемых внутри самих клеток;

– рост организмов – осуществляется при помощи увеличения их массы за счет размеров и числа клеток;

– иерархичность организации – клетки как биоединицы специфически организованны в ткани, ткани – в органы, органы – в системы органов;

– обмен веществ и энергии – сначала из внешней среды поступает энергия в форме солнечного света, затем химическая энергия преобразуется в клетках для синтеза ее структурных компонентов, работы по обеспечению транспорта веществ через мембрану и механической работы по обеспечению двигательной функции организма и сокращению мышщ;

– питание – источник энергии и веществ, необходимых для жизнедеятельности;

– дыхание – процесс освобождения энергии высокоэнергетических соединений;

– раздражимость – избирательная реакция живых существ на изменения внешней и внутренней среды, обеспечивающая стабильность жизнедеятельности;

– гомеостаз – живые организмы, обитающие в непрерывно меняющихся внешних условиях, поддерживают постоянство своего химического состава и интенсивность течения всех физиологических процессов с помощью авторегуляционных механизмов;

– способность к движению – свойственна живым существам, хотя их скорости значительно различаются; существуют различные механизмы движения живых существ.

Эти свойства в комплексе характеризуют любую живую систему и жизнь вообще:

  1. самообновление . Связано с потоком вещества и энергии. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад). В результате ассимиляции происходят обновление структур организма и образование новых его частей (клеток, тканей, частей органов). Диссимиляция определяет расщепление органических соединений, обеспечивает клетку пластическим веществом и энергией. Для образования нового нужен постоянный приток необходимых веществ извне, а в процессе жизнедеятельности (и диссимиляции, в частности) образуются продукты, которые нужно вывести во внешнюю среду;
  2. самовоспроизведение . Обеспечивает преемственность между сменяющимися генерациями биологических систем. Это свойство связано с потоками информации, заложенной в структуре нуклеиновых кислот. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями (несмотря на непрерывное обновление вещества). Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;
  3. саморегуляция . Базируется на совокупности потоков вещества, энергии и информации через живой организм;
  4. раздражимость . Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования. С раздражимостью связана саморегуляция живых систем по принципу обратной связи: продукты жизнедеятельности способны оказывать тормозящее или стимулирующее воздействие на те ферменты, которые стояли в начале длинной цепи химических реакций;
  5. поддержание гомеостаза (от гр. homoios - «подобный, одинаковый» и stasis - «неподвижность, состояние») - относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;
  6. структурная организация - определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой - биогеоценозов;
  7. адаптация - способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;
  8. репродукция (воспроизведение) . Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем. На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;
  9. наследственность . Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;
  10. изменчивость - свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;
  11. индивидуальное развитие (процесс онтогенеза) - воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров. Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;
  12. филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе.

В результате эволюции появилось, огромное количество видов. Прогрессивная эволюция прошла ряд ступеней. Это доклеточные, одноклеточные и многоклеточные организмы

вплоть до человека. При этом онтогенез человека повторяет филогенез (т. е. индивидуальное развитие проходит те же этапы, что и эволюционный процесс);

  1. дискретность (прерывистость) и в то же время целостность . Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также

дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же

время автономна. Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять

развитие того или иного признака.









Выделение , или экскреция , - это выведение из организма «шлаков» - ненужных продуктов обмена веществ. К шлакам, например, относится диоксид углерода (углекислый газ), который должен обязательно выводиться, поскольку, накапливаясь в избытке, он оказывает вредное действие. Животные получают с пищей много белков; эти вещества в организме не запасаются, поэтому они должны расщепляться и выводиться из организма. Таким образом, выделение у животных сводится в основном к экскреции азотистых веществ.

Размножение живой материи

Продолжительность жизни организмов ограничена, однако все они обладают способностью непрестанно «поддерживать жизнь», обеспечивая выживание вида. Вид выживает в результате того, что родители передают потомству свои основные признаки, независимо от того, возникло ли потомство в результате полового или бесполого размножения. В поисках причин, обусловливающих такую передачу признаков (наследование), «редукционисты» открыли нуклеиновые кислоты - ДНК (дезоксирибонуклеиновую кислоту) и РНК (рибонуклеиновую кислоту). В молекулах этих кислот содержится закодированная информация, передающаяся от одного поколения организмов другому, следующему за ним.

Рост живой материи

Объекты неживой природы (например, кристаллы или сталагмиты) растут путем наращивания вещества на своей наружной поверхности. Живые же существа растут изнутри, используя питательные вещества, поступающие в организм с пищей. В результате ассимиляции этих веществ образуется новая живая материя.

Перечисленные выше семь главных признаков живого в той или иной степени присущивсем организмам . Все эти - лишь наблюдаемые проявления главных свойств материи, т. е. ее способности извлекать, накапливать и использовать энергию извне. Но, кроме того, живая материя способна не только поддерживать, но и увеличивать свои энергетические запасы. В отличие от живой материи мертвое органическое вещество легко разрушается под действием механических и физических факторов среды. Живые существа обладают встроенной системой саморегуляции, которая поддерживает процессы жизнедеятельности и препятствует неуправляемому распаду структур и веществ и бесцельному выделению энергии. Такая регуляция направлена на поддержание гомеостаза на всех уровнях организации живых систем - от молекул до целых сообществ.

Все перечисленные здесь особенности живого рассматриваются более подробно в соответствующих разделах книги, причем во многих главах описаны химические и физические механизмы, лежащие в основе тех или иных явлений. Этим мы обязаны успешным исследованиям последних лет. Наши знания о том, что происходит в клетке или в организме, несомненно, обогатились после открытия и изучения ДН К, белкового синтеза, механизмов наследственности, ферментов, гормонов, иммунного ответа и многих других аспектов структуры и функции живых организмов.

В приложениях, помещенных в конце третьего тома, вы найдете некоторые сведения, необходимые любому биологу , и в том числе: сведения по химии, описания методов научного познания, экспериментальных подходов и многое другое. Приложения составлены так, чтобы снабдить необходимой информацией тех студентов, у которых есть существенные пробелы в той или иной области. Освоив эту информацию, можно попытаться выработать у себя способность к критической оценке и описанию наблюдаемых явлений. Ведь именно такой способ мышления лежит в основе любого научного поиска.

Введение в биологию с основами экологии

Биология как наука

Биология – наука, изучающая свойства живой материи, а также жизнь во всех ее проявлениях. Правильнее говорить о биологии как окомплексе наук, отличающихся одна от другой. При этом все они непосредственно связаны с изучением живого, поэтому и объединяются в единую систему биологических наук. В рамках этой системы группы дисциплин можно разделить по различным направлениям исследований, а именно, по изучению:

1) систематических групп;

2) различных уровней организации живой материи;

3) структуры свойств и проявлений индивидуальной жизни;

4) структуры, свойств и проявлений коллективной жизни и сообществ живых организмов;

5) практического использования биологического знания;

6) по методам исследований и связям с другими науками.

Изучением систематических групп занимаются: вирусология – наука о вирусах; микробиология – наука, занимающаяся изучением микроорганизмов; микология – наука о грибах; ботаника (или фитология) – наука о растениях; зоология – наука о животных; антропология – наука о человеке.

При этом каждая из дисциплин делится на ряд более узких направлений в зависимости от объекта исследований. Например, зоология объединяет такие науки, как: протозоология – наука о простейших (одноклеточных) животных, малакология – наука о моллюсках, энтомология – наука о насекомых, териология – наука о млекопитающих, и др. В ботанике выделяются: альгология – наука о водорослях, лихенология – наука о лишайниках, бриология – наука о мхах, и др.

Разные уровни организации живого изучают: молекулярная биология – наука, исследующая общие свойства и проявления жизни на молекулярном уровне, цитология – наука о клетках, гистология – наука о тканях.

По свойствам и проявлениям жизни отдельных организмов следует различать: анатомию – науку о внутреннем строении, морфологию (в узком смысле) – науку о внешнем строении, физиологию – науку о жизнедеятельности целостного организма и его частей, генетику – науку о законах наследственности и изменчивости организмов и методах управления ими.

Отдельно можно выделить науки о развитии живой материи. Сюда обычно относят биологию индивидуального развития организмов, включающую эмбриологию (наука о предзародышевом развитии, оплодотворении, зародышевом и личиночном развитии организмов), а также теорию эволюции или эволюционное учение (комплекс знаний об историческом развитии живой природы).

Изучением коллективной жизни и сообществ живых организмов занимаются: этология – наука о поведении животных, экология – наука об отношениях различных организмов и образуемых ими сообществ между собой и с окружающей средой. Как самостоятельные разделы экологии рассматривают: биоценологию – науку о сообществах живых организмов, популяционную экологию – отрасль знаний, изучающую структуру и свойства популяций, и др. Биогеография занимается изучением общих вопросов географического распространения живых организмов.

По методам исследований обычно выделяют биохимию, биофизику и биометрию. В зависимости от того, в какой именно области человеческой деятельности используются биологические знания, выделяют: биотехнологию, агробиологию, животноводство, ветеринарию, фитопатологию, медицинскую биологию, биологию охраны природы.

Биологические науки теснейшим образом связаны с физикой, химией, математикой, геологией, географией и принадлежат к единому комплексу естественных наук, т. е. наук о природе. Всех их объединяет не только предмет изучения – природа, но и методы, которыми пользуются исследователи для выяснения тех или иных закономерностей.

Наиболее общим и важным для биологических исследований является исторический метод, наблюдение, эксперимент, построение и изучение моделей их функционирования.

Как никогда остро сегодня стоят проблемы взаимоотношений человека с окружающей его средой, рационального использования ресурсов и охраны природы. Практика показала, что элементарное незнание законов биологии приводит к тяжелейшим, иногда необратимым последствиям как для самой природы, так и для человека.

Свойства живой материи

Рассмотрим наиболее общие признаки живого вещества.

1. Питание. Пища нужна всем живым существам. Они используют ее как источник энергии и веществ, необходимых для роста и других процессов жизнедеятельности.

Дыхание. Для всех процессов жизнедеятельности нужна энергия. Поэтому основная масса питательных веществ, получаемых в результате питания, используется в качестве источника энергии. Энергия высвобождается в процессе дыхания при расщеплении некоторых высокоэнергетических соединений. Высвобождаемая энергия запасается в молекулах аденозинтрифосфата (АТФ), который обнаружен во всех живых клетках.

3. Раздражимость. Все живые существа способны реагировать на изменение внешней и внутренней среды, что помогает им выжить.

.4. Подвижность. Животные отличаются от растений способностью перемещаться из одного места в другое, т. е. способностью к движению. Животным необходимо двигаться, чтобы добывать пищу.

5.Выделение, или экскреция , – это выведение из организма конечных продуктов обмена веществ.

Размножение. Выживание вида обеспечивается сохранением главных признаков родителей у потомства, возникшего путем бесполого или полового размножения. В молекулах этих кислот содержится закодированная наследственная информация, которая передается от одного поколения к другому.

Рост. Живые существа растут изнутри за счет питательных веществ, которые организм получает в процессе автотрофного или гетеротрофного питания. В результате ассимиляции этих веществ образуется новая живая протоплазма.

Эти семь главных признаков живого более или менее выражены у любого организма и служат единственным показателем того, жив он или мертв. Не следует, однако, забывать, что все эти признаки - лишь наблюдаемые проявления главных свойств живой материи (протоплазмы), т. е. ее способности извлекать, превращать и использовать энергию извне. К тому же протоплазма способна не только поддерживать, но и увеличивать свои энергетические запасы.

Живые существа обладают встроенной системой саморегуляции, которая поддерживает процессы жизнедеятельности и препятствует неуправляемому распаду структур и веществ и бесцельному выделению энергии. Такая регуляция направлена на поддержание гомеостаза на всех уровнях организации живых систем - от молекул до целых сообществ.

ПРЕДИСЛОВИЕ

Знакомство с биологической химии имеет большое зна­чение, прежде всего, для формирования отчетливого понимания жизненных процессов.

Современные достижения биохимии в раскрытии молекулярных механизмов живой природы позволяют понять физико-химические основы жизнедеятельно­сти, биоэнергети­ки, обмена веществ, саморегуляции биохимических процессов в организ­ме.

Данное учебное пособие предназначено для подготовки студен­тов по направлению «Экология и природопользование», но может быть использовано также студентами других специаль­ностей при изучении курса общей биохимии, разделов органической химии посвященных биоорганическим соединениям. При написании данного учебного пособия автор исходил из того, что студенты, начинающие изучать биохимию, уже знакомы с вопросами общей и органической хи­мии. Поэтому из огромного материала выбраны основные темы и вопросы, позволяю­щие дать студенту общие представления о молекулярных основах жизни.

Данное учебное пособие придерживается антропоцентрического принципа, все вопросы общей биохимии рассматриваются, прежде всего, в приложении к орга­низму человека, но в сравнении с другими живыми организмами всех уровней организации. Учебное пособие построено таким образом, что обеспечивает постепенность перехода от более простых вопросов стати­ческой биохимии к более сложным вопросам динамической биохимии, включающим иногда и некоторые аспекты биохимии функциональной. Поэтому в первой части пособия рассмотрены основные признаки и хи­мический состав живых организмов; даны современные представления о строении, свойствах и биологических функциях белков, углеводов, нук­леиновых кислот, липидов, ферментов, витаминов, коферментов, гормо­нов. Далее во второй части рассматриваются основные вопросы обмена веществ и энергии, биологического окисления; обмена углеводов, липи­дов, нуклеиновых кислот, белков и водно-солевого обмена, молекуляр­ные основы переноса информации, регуляции биохимиче­ских процессов, а также биохимические функции отдельных органов и тканей.

Учебное пособие содержит таблицы и рисунки, а также боль­шое количество реакционных схем, структурных формул и химических названий, так как, не зная химического строения биоорганических ве­ществ и сущности их химических превращений, невозможно понять их биологическую роль и физиологическое значение при рассмотрении функциональной активности органов и тканей.


ВВЕДЕНИЕ

Предмет и задачи биохимии

Биологическая химия - сравнительно молодая наука. Как само­стоятельная научная дисциплина она возникла в конце XIX века, когда в ряде университетов были созданы кафедры био­химии, написаны учебники по этому предмету, а курс биохимии стал не­пременной составной частью подготовки биологов и медиков, специалистов пищевой индустрии.

Биологическая химия - наука о молекулярных основах жизни, изучающая химическую природу веществ, входящих в состав живых организмов, их превращения, а, также связь этих превращений с деятельностью органов и тканей, изменениями в окружающей среде.

В зависимости от подхода к изучению живых организмов, биохимию делят на три крупных раздела:

1) статическая биохимия;

2) динамическая биохимия;

3) функциональная биохимия.

Статическая биохимия изучает качественный состав и количест­венное содержание соединений, входящих в состав биоло­гических объектов.

Динамическая биохимия изучает всю совокупность превращений химических соединений и взаимосвязанных с ними превращений энергии в процессе жизнедеятельности организмов.

Функциональная биохимия изучает связь между строением хи­мических соединений, их превращениями, с одной стороны, и функцией тканей или органов, содержащих эти вещества, - с другой стороны.

Вышеназванные три раздела биохимии неразрывно связаны между собой, так как в живом организме состав и строение веществ неот­делимы от их преобразований, а также и от функций органов, в ко­торых эти вещества содержатся. Но в методологическом плане такое деление удобно, так как, с одной стороны, отражает историю развития биохимии, а с другой - позволяет постепенно, перейти при изучении кур­са от более простых вопросов к более сложным.

В зависимости от объекта исследования биологическую химию делят на целый ряд направлений.

Общая биохимия - рассматривает закономерности содержания и преобразования в процессе жизнедеятельности организмов химических соединений, общих для живой материи в целом. Несмотря на биохимиче­ское единство всего живого, в животных, растительных и микроорганиз­мах существуют и коренные различия, прежде всего в характере обмена веществ. Обмен веществ или метаболизм - совокупность всех химических реакций, протекающих в клетках организма (рис. Стр 117), направленная на сохранение и са­мовоспроизведение живых систем. Вышеизложенное объясняет сущест­вование помимо общей биохимии и некоторых других направлений био­логической химии.

Биохимия животных - изучает состав животных организмов и превращение в них веществ и энергии.

Биохимия растений - исследует состав растительных организмов и процессы метаболизма в них.

Биохимия микроорганизмов - занимается составом и превраще­нием веществ в микроорганизмах.

Медицинская биохимия (биохимия человека) - включает в себя все общебиохимические направления, но в той их части, которая имеет отношение к здоровью и болезням человека, то есть она изучает состав и превращения веществ в организме человека в норме и патологии.

Фармацевтическая биохимия занимается разработкой новых ле­карственных препаратов; вопросами стандартизации и контроля качества лекарств, метаболизма их в организме.

Сравнительная биохимия - сопоставляет состав и пути превра­щений веществ у организмов различных систематических групп, в том числе и в эволюционном аспекте.

Техническая биохимия - исследует состав важнейших пищевых продуктов и изучает процессы, происходящие при их производстве и хранении.

Таким образом, биохимия в целом изучает химические и физико-химические процессы, результатом которых являются развитие и функ­ционирование живых систем всех уровней организации. Главной задачей для биохимии является выяснение функционального (биологического) назначения всех химических веществ и физико-химических процессов в живом организме, а также механизма нарушения этих функций при раз­ных заболеваниях.

Биохимия имеет огромное теоретическое и практическое значе­ние, особенно велико ее значение в биологии, так как управление жиз­недеятельностью любого организма (человека, животного, растения, микробов) невозможно без расшифровки в достаточной мере набора, строения и свойств химических соединений в его составе, а также без выяснения закономерностей их превращений в процессе жизнедеятель­ности организма.

Кроме того, в биохимии, а именно биоорганической химии, исхо­дя из функций отдельных веществ в организме и механизма их действия разрабатываются принципы создания синтетических биоактивных соеди­нений, т.е. веществ, определенным образом изменяющих функции орга­низма. На базе известных микроорганиз­мов путем пересадки новых или модификации уже имеющихся генов соз­даются новые штаммы микроорганизмов, которые применяют для произ­водства дешевого кормового белка и незаменимых аминокислот. При этом в качестве питательной среды для таких микроорганизмов часто используют парафины нефти. Разработаны биологические спо­собы переработки промышленных и бытовых отходов, очистки морей от нефтепродуктов с помощью специально выведенных мутантов бактерий. Биологические катализаторы - ферменты применяются в фармацевтиче­ской промышленности для синтеза лекарств. Опять же с помощью мик­роорганизмов и методов генной инженерии созданы экономичные спосо­бы промышленного производства лекарственных препаратов - аминокис­лот, нуклеотидов, нуклеозидов, витаминов, антибиотиков и др. Разрабо­таны быстрые и специфичные методы анализа лекарств с использовани­ем ферментов в качестве аналитических реагентов.

Таким образом, биохимия является фундаментом для решения важнейших вопросов производства продовольствия, медицины, экологии. Закономерности распада и синтеза химиче­ских соединений в природных условиях используются в про­мышленности и защите окружающей среды.

Основные признаки живой материи

Основными признаками, отличающими живой организм от нежи­вого, являются следующие: 1) высокий уровень структурной организации (упорядоченность); 2) способность к эффективному преобразованию и использованию энергии; 3) обмен с окружающей средой и саморегуляция химических превращений; 4) самовоспроизведение. Рассмотрим отдельно каждый признак.

1. Высокий уровень структурной организации (упорядо­ченность). Если клетку разобрать на отдельные молекулы, а затем рас­положить их по степени сложности, получится своеобразная шкала уров­ней организации клетки (См. ниже рисунок иллюстрирующий иерархию живой материи).

Переход от простых биомолекул к сложным биоструктурам осно­вывается на физико-химических принципах самоорганизации, в основе которой лежат химические взаимодействия между молекулами в составе живой материи. Ковалентные связи обеспечивают все многообразие про­стых биомолекул и макромолекул.

Укладка макромолекул в пространстве и организация надмоле­кулярных структур, органоидов и клетки осуществляется с участием сла­бых связей (водородных и ван-дер-ваальсовых). Ковалентные связи обу­словливают прочность и устойчивость биомолекул, а слабые связи обес­печивают лабильность биоструктур. Более сложная организация объяс­няет явления живой природы и отличия живой материи от неживой.

Рис. Иерархия структурной биохимической организации живой материи


2. Способность к преобразованию и использованию энергии. Структурная организация (упорядоченность) живой природы связана с законами термодинамики. На первый взгляд, упорядоченность структуры живых организмов противоречит второму закону термодина­мики, согласно которому в изолированной системе спонтанные процессы происходят в направлении увеличения энтропии (беспорядка). Энтропия вселенной стремится к максимуму. Но под "вселенной" подразумевается система и ее окружение. Это важно подчеркнуть, так как энтропия системы может спонтанно уменьшаться до тех пор, пока окружающая среда может это скомпенсировать. Этим объясняется антиэнтропийность жи­вых организмов, являющихся открытыми системами (обмен с окружаю­щей средой веществом и энергией). Живые существа - очень упорядо­ченные структуры с низкой энтропией, однако они растут и поддержива­ют жизнь в силу того, что при их метаболизме генерируется избыток эн­тропии в окружающей среде.

Для поддержания структурной упорядоченности живые организ­мы постоянно расходуют энергию. Подчиняясь первому закону термоди­намики, они потребляют энергию из окружающей среды, преобразуют ее в удобную для использования форму и возвращают эквивалентное коли­чество энергии в окружающую среду в форме теплоты. Обмениваясь с внешней средой энергией и веществом, клетка является открытой нерав­новесной системой. Если бы эти процессы пришли в состояние равнове­сия, то упорядоченность клетки не могла бы поддерживаться за счет ок­ружающей среды, и она бы погибла.

3. Обмен с окружающей средой и саморегуляция химиче­ских превращений. Поступающие в клетку вещества используются как источник энергии и как строительный материал. Для построения нужных организму молекул поступающие извне вещества подвергаются хими­ческим превращениям. Продукты этих превращений, т.е. продукты обме­на, выводятся из организма во внешнюю среду. Биологические катализаторы белковой природы - ферменты - обеспечивают высокую скорость катализа, специфичность химических превращений и, самое главное, их саморегуляцию. Отсутствие в неживых объектах белков, в том числе и белков - ферментов, исключает у них возможность специфического об­мена веществ и саморегуляцию химических превращений.

4. Самовоспроизведение, передача наследственной ин­формации. Самым уникальным признаком живых организмов, полно­стью отсутствующим в неживой природе, является способность к само­воспроизведению. Все многообразие живых существ определяется на­следственной программой, заложенной в нуклеиновых кислотах. Генети­ческая информация хранится в дезоксирибонуклеиновой кислоте (ДНК). Особенностью ее строения является потенциальная возможность самоко­пирования и, следовательно, передачи наследственных признаков от одного поколения организма к другому. Информация, заложенная в ДНК, реализуется через рибонуклеиновые кислоты (РНК) в структуре соответ­ствующего белка. При этом процесс передачи наследственной информа­ции не может происходить без белков. Очевидно, с образованием в ходе эволюции белков и нуклеиновых кислот сформировались первичные жи­вые организмы.


Похожая информация.