Первое свойство медианы. Все, что нужно знать о треугольнике

Урок 1

Медианы треугольника. Точка пересечения медиан.

Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Доказательство:

Точка пересечения медиан треугольника является центром тяжести этого треугольника.

Задача 1 Точка пересечения медиан треугольника отстоит от его вершин на расстояния, равные 4, 6 и 8. Найти длины медиан треугольника.

Решение. Пусть в треугольнике АВС AM, BE и CD - медианы, К – точка их пересечения, KС=4, KА=6 и КВ=8.

https://pandia.ru/text/78/182/images/image004_34.gif" width="76" height="50">, то есть на отрезок КА приходится 2 части, а на отрезок КМ – одна часть, то вся медиана АМ состоит из трех равных частей и https://pandia.ru/text/78/182/images/image006_24.gif" width="104" height="41">.

Аналогично,

,

Ответ: 6, 9 и 12

Задача 2 Медианы AM и СК треугольника АВС взаимно перпендикулярны и равны соответственно 6 и 9 . Вычислить длины сторон АВ и ВС.

https://pandia.ru/text/78/182/images/image010_15.gif" width="104" height="41">,

поэтому и

, .

Кроме того

, .

Вычислим по теореме Пифагора длины отрезков AK и СМ, получаем

Теперь вычислим длины сторон АВ и ВС:

АВ=2АК=10, ВС=2СМ=.

Ответ : 10;.

Тест для самоконтроля.

1. Медиана треугольника делит пополам (выбрать один из вариантов ответов)

1) угол треугольника

2) сторону треугольника

3) две стороны треугольника

2. В каком отношении точка пересечения медиан треугольника делит каждую из медиан треугольника (выбрать правильные варианты ответов).


1) 2:1 считая от основания треугольника

2) 1:2 считая от вершины треугольника

3) 2:1 считая от вершины треугольника

4) 1:2 считая от основания треугольника

5) на две равные части

3. Если в треугольнике АВС проведена медиана АM и Р – точка пересечения медиан треугольника, то какую часть медианы АМ составляет отрезок АР? (выбрать один из вариантов ответов)

4. В треугольнике АВС проведена медиана АM и Р – точка пересечения медиан треугольника. Какую часть медианы АМ составляет отрезок РМ? (выбрать один из вариантов ответов)

5. В треугольнике АВС проведена медиана АM и Р – точка пересечения медиан треугольника. Какую часть отрезка АР составляет отрезок РМ? (выбрать один из вариантов ответов)

Посмотреть правильные ответы.

Задачи для самостоятельного решения.

1. Точка пересечения медиан треугольника отстоит от его вершин на расстояния, равные 6 см, 8 см и 12 см. Найдите длины медиан треугольника.

Посмотреть решение.

2. Медианы ВM и СК треугольника АВС взаимно перпендикулярны и равны соответственно 15 и 36 . Найдите длины сторон АВ и АС.

Посмотреть решение.

3. Медианы треугольника равны 6, 9 и 12. На каком расстоянии от вершин находится точка пересечения медиан треугольника?

Посмотреть решение.

4. Медианы треугольника равны 9, 12 и 18. Найдите расстояния от середин сторон треугольника до центра тяжести данного треугольника.

Посмотреть решение.

5. Центр тяжести треугольника отстоит от середин его сторон на расстояния. Равные 5, 6 и 7. Найдите медианы данного треугольника.

Посмотреть решение.

6. Точка пересечения медиан треугольника удалена от середин его сторон на расстояния, равные 2, 3 и 4. На каких расстояниях от вершин треугольника находится эта точка?

Посмотреть решение.

1. Медиана разбивает треугольник на два треугольника одинаковой площади.

2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Свойства биссектрис треугольника

1. Биссектриса угла - это геометрическое место точек, равноудаленных от сторон этого угла.

2. Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилегажащим сторонам: .

3. Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.

Свойства высот треугольника

1. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.

2. В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

Свойства серединных перпендикуляров треугольника

1. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

2. Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.

Свойство средней линии треугольника

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Подобие треугольников

Два треугольника подобны, если выполняется одно из следующих условий, называемых признаками подобия:

· два угла одного треугольника равны двум углам другого треугольника;

· две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны;

· три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.

В подобных треугольниках соответствующие линии (высоты, медианы, биссектрисы и т. п.) пропорциональны.

Теорема синусов

Теорема косинусов

a 2 = b 2 + c 2 - 2bc cos

Формулы площади треугольника

1. Произвольный треугольник

a, b, c - стороны; - угол между сторонами a и b ; - полупериметр; R - радиус описанной окружности; r - радиус вписанной окружности; S - площадь; h a - высота, проведенная к стороне a .

S = ah a

S = ab sin

S = pr

2. Прямоугольный треугольник

a, b - катеты; c - гипотенуза; h c - высота, проведенная к стороне c .

S = ch c S = ab

3. Равносторонний треугольник

Четырехугольники

Свойства параллелограмма

· противолежащие стороны равны;

· противоположные углы равны;

· диагонали точкой пересечения делятся пополам;

· сумма углов, прилежащих к одной стороне, равна 180°;

· сумма квадратов диагоналей равна сумме квадратов всех сторон:

d 1 2 +d 2 2 =2(a 2 +b 2).

Четырехугольник является параллелограммом, если:

1. Две его противоположные стороны равны и параллельны.

2. Противоположные стороны попарно равны.

3. Противоположные углы попарно равны.

4. Диагонали точкой пересечения делятся пополам.

Свойства трапеции

· ее средняя линия параллельна основаниям и равна их полусумме;

· если трапеция равнобокая, то ее диагонали равны и углы при основании равны;

· если трапеция равнобокая, то около нее можно описать окружность;

· если сумма оснований равна сумме боковых сторон, то в нее можно вписать окружность.

Свойства прямоугольника

· диагонали равны.

Параллелограмм является прямоугольником, если:

1. Один из его углов прямой.

2. Его диагонали равны.

Свойства ромба

· все свойства параллелограмма;

· диагонали перпендикулярны;

· диагонали являются биссектрисами его углов.

1. Параллелограмм является ромбом, если:

2. Две его смежные стороны равны.

3. Его диагонали перпендикулярны.

4. Одна из диагоналей является биссектрисой его угла.

Свойства квадрата

· все углы квадрата прямые;

· диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.

Прямоугольник является квадратом, если он обладает каким-нибудь признаком ромба.

Основные формулы

1. Произвольный выпуклый четырехугольник
d 1 , d 2 - диагонали; - угол между ними; S - площадь.

Треугольник – многоугольник с тремя сторонами, или замкнутая ломаная линия с тремя звеньями, или фигура, образованная тремя отрезками, соединяющими три точки, не лежащие на одной прямой (см. рис. 1).

Основные элементы треугольника abc

Вершины – точки A, B, и C;

Стороны – отрезки a = BC, b = AC и c = AB, соединяющие вершины;

Углы – α , β, γ образованные тремя парами сторон. Углы часто обозначают так же, как и вершины, – буквами A, B и C.

Угол, образованный сторонами треугольника и лежащий в его внутренней области, называется внутренним углом, а смежный к нему является смежным углом треугольника (2, стр. 534).

Высоты, медианы, биссектрисы и средние линии треугольника

Кроме основных элементов в треугольнике рассматривают и другие отрезки, обладающие интересными свойствами: высоты, медианы, биссектрисы исредние линии.

Высота

Высоты треугольника – это перпендикуляры, опущенные из вершин треугольника на противоположные стороны.

Для построения высоты необходимо выполнить следующие действия:

1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);

2) из вершины, лежащей напротив проведенной прямой, провести отрезок из точки к этой прямой, составляющий с ней угол 90 градусов.

Точка пересечения высоты со стороной треугольника называется основанием высоты (см. рис. 2).

Свойства высот треугольника

    В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному треугольнику.

    В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

    Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон.

    Три высоты в остроугольном треугольнике пересекаются в одной точке и эту точку называют ортоцентром треугольника.

Медиана

Медианы (от лат. mediana– «средняя») – это отрезки, соединяющие вершины треугольника с серединами противолежащих сторон (см. рис. 3).

Для построения медианы необходимо выполнить следующие действия:

1) найти середину стороны;

2)соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком.

Свойства медиан треугольника

    Медиана разбивает треугольник на два треугольника одинаковой площади.

    Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса

Биссектрисами (от лат. bis – дважды» и seko – рассекаю) называют заключенные внутри треугольника отрезки прямых, которые делят пополам его углы (см. рис. 4).

Для построения биссектрисы необходимо выполнить следующие действия:

1) построить луч, выходящий из вершины угла и делящий его на две равные части (биссектрису угла);

2) найти точку пересечения биссектрисы угла треугольника с противоположной стороной;

3) выделить отрезок, соединяющий вершину треугольника с точкой пересечения на противоположной стороне.

Свойства биссектрис треугольника

    Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.

    Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.

    Биссектрисы внутреннего и внешнего углов перпендикулярны.

    Если биссектриса внешнего угла треугольника пересекает продолжение противолежащей стороны, то ADBD=ACBC.

    Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка - центр одной из трех вневписанных окружностей этого треугольника.

    Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.

    Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.

В этой статье вы найдете свойства биссектрисы и медианы треугольника, которые могут быть полезны при решении задач.

Биссектрисы.

1. Точка пересечения биссектрис треугольника является центром вписанной в треугольник окружности.

Доказательство.

Действительно, точки, лежащие на биссектрисе угла равноудалены от сторон угла. Следовательно, точка пересечения биссектрис равноудалена от всех сторон треугольника, то есть является центром вписанной окружности.

2. Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам:


Доказательство.

Сделаем дополнительные построения. Проведем через точку прямую , параллельную

Точка пересечения прямой и прямой :


∠1=∠2, так как - биссектриса ∠

∠2=∠3 как накрест лежащие, так как по построению.

Следовательно, ∠1=∠3 и треугольник - равнобедренный, и .


следовательно,

3. Длина биссектрисы вычисляется по таким формулам:

Докажем вторую формулу.

Введем обозначения:


Приравняем выражения для площади треугольника :

4. Пусть О-центр вписанной окружности, -биссектриса угла треугольника :


Тогда выполняется соотношение:

Доказательство:

Рассмотрим треугольник :


Биссектриса угла , следовательно, по свойству биссектрисы треугольника

Пусть , тогда

Выразим . По свойству биссектрисы треугольника :

Отсюда

Биссектрису треугольника в некоторых задачах удобно продолжить до пересечения с описанной окружностью.

Лемма о трилистнике.

Дан треугольник . Точка - точка пересечения биссектрисы угла с описанной около треугольника окружностью. Пусть - центр вписанной в треугольник окружности. Тогда


Доказательство.

Вписанные углы, которые опираются на равные дуги равны. Отметим равные вписанные углы:


Отсюда .

Центр вписанной окружности, поэтому -бисссектриса угла .

Из треугольника

Тогда из треугольника

Получили .

То есть треугольник - равнобедренный.

Отсюда .

Доказали, что

Докажем формулу (1) из п. 3:


Доказательство:

Продолжим биссектрису до пересечения с описанной окружностью. Рассмотрим треугольники и . Отметим равные углы:


Треугольник подобен треугольнику по двум углам. Отсюда:

По свойству отрезков пересекающихся хорд

Подставим (3) в (2) и воспользуемся (4):

Выразим длины отрезков, на которые биссектриса делит сторону треугольника через длины сторон треугольника. Введем обозначения:


Получим систему:

Медианы.

1. Медианы треугольника делятся точкой пересечения в отношении 2:1, считая от вершины:


2. Пусть - точка внутри треугольника такая, что выполняется соотношение: , то - точка пересечения медиан треугольника .


Доказательство.

Докажем вспомогательную теорему.

Лемма.

Для произвольной точки внутри треугольника выполняется соотношение:

Опустим из точек и перпендикуляры на :


Из подобия треугольников и получаем:

Если мы рассмотрим треугольники и с общим основанием , то получим соотношение:

Аналогично получим

Сложив эти равенства получим:

Используем эту лемму для доказательства утверждения 2.

Если выполняется равенство (1) , то выполняется равенство (2) и из леммы следует, что в равенстве (2) каждая дробь равна .

Докажем, что в этом случае отрезки являются медианами.

Если , то получаем . Проведем через точку прямые, параллельные и и рассмотрим две пары подобных треугольников: и :


Отсюда получаем

Из подобия треугольников получаем , то есть точка - середина отрезка . Отсюда .

Следовательно, - медиана треугольника .

3. Медианы треугольника, пересекаясь, разбивают его на 6 равновеликих треугольника.


Доказательство.

Докажем, что

так как ,

так как ,

Следовательно,

Высоты.

1. Прямые, содержащие высоты треугольника пересекаются в одной точке. В случае остроугольного треугольника в одной точке пересекаются сами высоты.



2. Точка пересечения высот треугольника обладает следующим свойством: сумма квадрата расстояния от вершины треугольника и квадрата противолежащей стороны одинаковая для любой вершины:

Доказательство.

Докажем первую часть равенства:

Перепишем его в виде:

По теореме Пифагора: (из треугольников и )

(из треугольника )

(из треугольника )

Подставим эти выражения в (1), получим:

Раскроем скобки, получим:

Получили тождество. Вторая часть равенства доказывается аналогично.

3. Если описать вокруг треугольника окружность и продлить высоты треугольника до пересечения с этой окружностью,


то для любой высоты треугольника расстояние от основания высоты до точки пересечения продолжения высоты с окружностью равно расстоянию от основания высоты до точки пересечения высот:

Или так: Точки, симметричные точке пересечения высот треугольника относительно сторон треугольника, лежат на описанной около треугольника окружности.

Доказательство.

Докажем, что .

Для этого рассмотрим треугольники и , и докажем, что :


Воспользуемся признаком равенства треугольников по стороне и двум прилежащим углам. - общая сторона. Докажем равенство двух углов.

Докажем, что ∠ ∠

Пусть ∠, тогда из треугольника получим, что

. Следовательно, из треугольника получим, что

Но ∠ и ∠ опираются на одну дугу , следовательно, ∠ ∠ ∠

Аналогично получаем, что ∠ ∠

4. В треугольнике точки и - основания высот, проведенных из вершин и . Доказать, что треугольник подобен треугольнику и коэффициент подобия равен .


Доказательство:

Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы . Точка лежит на этой окружности, так как - гипотенуза прямоугольного треугольника :

Как вписанные углы, опирающиеся на одну дугу.

из треугольника :

Отсюда . Угол - общий угол треугольников и . Следовательно, треугольник подобен треугольнику . Коэффициент подобия равен отношению сходственных сторон, то есть сторон, которые лежать против равных углов:

Теорема Чевы

Пусть в треугольнике

Отрезки пересекаются в одной точке в том и только том случае, если


Доказательство.

Докажем, что если отрезки пересекаются в одной точке, то соотношение (1) выполняется.

Легко проверить, что если , то выполняется

Применим это свойство пропорции:

Аналогично:

Теорему Чевы можно записать в таком виде:

Если отрезки пересекаются в одной точке, то выполняется соотношение:

Чтобы доказать теорему Чевы в форме синусов , достаточно во вторую часть равенства (2) вместо площадей треугольников подставить для площади каждого треугольника формулу .

Из лекций Агаханова Назара Хангельдыевича и Владимира Викторовича Трушкова, КПК МФТИ.

Содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы .

  • Можно также ввести понятие внешней медианы треугольника.

Энциклопедичный YouTube

    1 / 3

    ✪ МЕДИАНЫ биссектрисы и ВЫСОТЫ треугольника - 7 класс

    ✪ Медиана треугольника. Построение. Свойства.

    ✪ биссектриса, медиана, высота треугольника. Геометрия 7 класс

    Субтитры

Свойства

Основное свойство

Все три медианы треугольника пересекаются в одной точке , которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника

  • В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой .
  • Верно и обратное: если в треугольнике две медианы равны, то треугольник - равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.
  • У равностороннего треугольника все три медианы равны.

Свойства оснований медиан

  • Теорема Эйлера для окружности девяти точек : основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан ) и середины трёх отрезков, соединяющих его вершины с ортоцентром , все лежат на одной окружности (так называемой окружности девяти точек ).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией . Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.

Другие свойства

  • Если треугольник разносторонний (неравносторонний ), то его биссектриса , проведённая из любой вершины, лежит между медианой и высотой , проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника .
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку - точку Лемуана .
  • Медиана угла треугольника изотомически сопряжена самой себе.

Основные соотношения

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон: m a 2 + m b 2 + m c 2 = 3 4 (a 2 + b 2 + c 2) {\displaystyle m_{a}^{2}+m_{b}^{2}+m_{c}^{2}={\frac {3}{4}}(a^{2}+b^{2}+c^{2})} .

  • Обратно, можно выразить длину произвольной стороны треугольника через медианы:
a = 2 3 2 (m b 2 + m c 2) − m a 2 {\displaystyle a={\frac {2}{3}}{\sqrt {2(m_{b}^{2}+m_{c}^{2})-m_{a}^{2}}}} , где m a , m b , m c {\displaystyle m_{a},m_{b},m_{c}} медианы к соответствующим сторонам треугольника, a , b , c {\displaystyle a,b,c} - стороны треугольника.