Учет отдельных факторов в уравнении материального баланса. Уравнение материального баланса

Материальный баланс служит для контроля производства, регулирования состава продукции, установления производственных потерь. С помощью материального баланса можно определить экономические показатели технологических процессов и способов производства (производственные потери, степень использования составных частей молока, расход сырья, выход готового продукта)

В основе материального баланса лежит закон сохранения вещества, записанный математически в виде двух уравнений.

Первое уравнение – это баланс сырья и вырабатываемых из него продуктов

где m с , m г , m п – масса соответственно сырья, готового и побочного продуктов, кг, П – производственные потери, кг.

После переработки масса получаемых продуктов меньше массы переработанного сырья. Разницу между ними составляют производственные потери. Производственные потери выражают также в процентах от количества переработанного сырья:

Тогда уравнение (1) примет вид

(2)

Второе уравнение материального баланса составляют по массе сухих веществ молока или отдельных составных частей

Если составные части молока не претерпевают химических изменений в ходе технологических процессов, то количество их в сырье должно быть равно количеству в готовом и побочном продуктах. Баланс составных частей молока при его переработке можно составить так:

(3)

где ч с , ч г , ч п – массовая доля составных частей молока соответственно в сырье, в готовом и побочном продуктах, %; П ч, – потери составных частей молока, кг.

Потери выражают в процентах от составных частей молока, cодержащихся в сырье:

где n ч – потери составных частей молока, %.

После подстановки П ч в уравнение (3) второе уравнение материального баланса примет вид

(4)

Потери составных частей молока n ч и потери сырья n , выраженные в процентах, численно равны.

Баланс можно составить по любой части молока – жиру Ж , сухому остатку молока С , сухому обезжиренному молочному остатку (СОМО) О . Так, баланс по жиру при сепарировании молока

где Ж м , Ж сл , Ж об, – массовая доля жира соответственно в молоке, сливках и обезжиренном молоке, %; n ж – потери жира при сепарировании, %

Для производства сухого и сгущенного молока баланс можно составить по сухому молочному остатку:

(5)

где m сг – масса сгущенного молока, кг, С н.м , С сг – массовая доля сухого молочного остатка соответственно в нормализованном и сгущенном молоке, %; n c.в – потери сухих веществ при производстве сгущенного молока, %.

В уравнении (5) отсутствует одно слагаемое, так как при сгущении и сушке побочный продукт (вода) не содержит сухих веществ молока.

Решая совместно первое (2) и второе (4) уравнения материального баланса, можно определить массу сырья по готовому продукту при известном составе сырья, готового и побочных продуктов или установить массу готового продукта по массе сырья:

(6)

(7)

(8)

Материальные расчеты обычно проводят с учетом производственных потерь. При ориентировочных расчетах ими пренебрегают. Массу сырья готового и побочных продуктов без учета потерь определяют по формулам


(9)

(10)

(11)


Необходимо определить массу сливок для производства 500 кг масла, если массовая доля жира в масле составляет 78 %, в сливках – 38, в пахте – 0,7%. Нормативные потери при производстве масла составляют 0,6 %.

Для решения задачи воспользуемся формулой (7):


Массу готового продукта по сырью или массу сырья по готовому продукту можно определить как алгебраическим методом (по формулам), так и графическим (по расчетному треугольнику).

Сущность способа расчета с помощью треугольника состоит в следующем. В вершинах треугольника записывают массовую долю одной из составных частей молока, содержащихся в сырье ч с, в готовом ч г и побочном ч п продукта.


ч г На внутренних сторонах треугольника

записывают значение массы сырья т с,

ч г – ч с ч г – ч п готового т г и побочного m п продуктов

m п m c напротив соответствующей им массовой

им массовой доли составной части моло-

ч с m г ч п ка. На внешних сторонах треугольника

ч с – ч п располагают величину разности между массовыми долями составных частей молока (расположенными в вершинах треугольника), полученную вычитанием из большей величины меньшей.

В соответствии с правилом расчетного треугольника составляют пропорцию: отношение внутренних сторон к внешним – величина постоянная для данного треугольника:

Из этого соотношения определяют необходимые величины.

Уравнение материального баланса

Для того чтобы осуществлять расчеты про­цессов разработки нефтяных месторождений при упругом режиме, необходимо прежде всего получить дифференциальное уравнение этого ре­жима, при выводе к-го исходят из уравнения не­разрыв­ности массы фильтрующегося вещества.

24. Режим растворенного газа. Разновидности режима (режим чисто рас-го газа, смешанный режим, газонапорный режим)

При уменьшении давления ниже давления на­сыщения в раз­рабатываемом пласте развивается режим растворенного газа. Когда насыщенность порового пространства свободным газом, выде­лившимся из нефти, еще мала, газ остается в нефти в виде пузырьков. С увеличением же газо­насыщенности в связи с прогрессирующим сни­жением пластового давления пузырьки газа всплывают под действием сил гравитации, обра­зуя в по­вышенной части пласта газовое скопле­ние - газовую шапку, если ее образованию не мешает слоистая или иная неоднород­ность.

Выделяющийся из нефти газ, расширяясь со снижением давления, способствует вытеснению нефти из пласта. Режим пласта, при котором происходит такое вытеснение нефти, на­зывают режимом растворенного газа. Если произо­шло отделение газа от нефти в пласте в целом и обра­зовалась газовая шапка, режим растворенного газа сменяется газонапорным.

При РРГ запасы пластовой энергии зависят от коли­чества растворенного газа в нефти.

25 . Виды заводнения и области их применения . В Настоящее время заводнение это наиболее интенсивный и экономически эффективный способ воздействия, позволяющий значительно уменьшить количество добывающих скважин, увеличить их дебит, снизить затраты на 1 т добываемой нефти . С его помощью в СССР в начале 80-х годов было добыто свыше 90 % нефти .

В зависимости от расположения нагнетательных скважин по отношению к залежи нефти различают: законтурное, приконтурное и внутриконтурное за-воднение. На многих месторождениях применяют сочетание этих разновид-ностей.

ЗАКОНТУРНОЕ ЗАВОДНЕНИЕ

Недостаточное продвижение контурных вод в процессе разработки, не компенсирующее отбор нефти из залежи, сопровождающееся снижением пластового давления и уменьшением дебитов скважин, обусловило возникновение метода законтурного заводнения. Сущность этого явления заключается в быстром восполнении природных энергетических ресурсов, расходуемых на продвижение нефти к забоям эксплуатационных скважин. С этой целью поддержание пластового давления производится закачкой воды через нагнетательные скважины, расположенные за пределами нефтеносной части продуктивного пласта в зоне, занятой водой (за внешним контуром нефтеносности ) (рис. 1). При этом, линию нагнетания намечают на некотором расстоянии за внешним контуром нефтеносности. Это расстояние зависит от таких факторов, как:

· степень разведанности залежи – степень достоверности установления местоположения внешнего контура нефтеносности , что в свою очередь зависит не только от числа пробуренных скважин, но и от угла падения продуктивного пласта и от его постоянства;

· предполагаемое расстояние между нагнетательными скважинами;

· расстояние между внешними и внутренними контурами нефтеносности и между внутренним контуром нефтеносности и первым рядом добывающих скважин.

Чем лучше степень разведанности, чем достовернее определено местопо-ложение внешнего контура нефтеносности , чем круче и выдержаннее пласт,тем ближе к контуру можно наметить линию нагнетания. Смысл этого требования заключается в гарантии от заложения нагнетательных скважин в нефтеносной части пласта. Чем больше будет расстояние между нагнетательными скважинами, тем больше должно быть и расстояние от контура нефтеносности до линии нагнетания. Выполнение этого требования обеспечивает сохранение формы контуров нефтеносности без резких языков вторжения воды в нефтяную часть пласта против нагнетательных скважин и достижение равномерности перемещения водонефтяного контакта (ВНК).

Положительный эффект системы законтурного заводнения

Законтурное заводнение дает значительный эффект и не имеет указанных выше недостатков при разработке залежей малых и средних размеров, когда имеется не более четырех батарей скважин.

При законтурном заводнении не нарушается естественное течение процесса, а лишь интенсифицируется, приближая область питания непосредственно к залежи.

Опыт разработки нефтяных месторождений с применением законтурного заводнения привел к следующим основным выводам:

1. Законтурное заводнение позволяет не только поддерживать пластовое давление на первоначальном уровне, но и превышать его.

2. Использование законтурного заводнения дает возможность обеспечивать доведение максимального темпа разработки месторождений до 5-7 % от начальных извлекаемых запасов, применять системы разработки с параметром плотности сетки скважин 20-60 10 4 м2 / скв при довольно высокой конечной нефтеотдаче , достигающей 0,50 – 0,55 в сравнительно однородных пластах и при вязкости нефти в пластовых условиях порядка 1-5 10 –3 Па с.

3. При разработке крупных по площади месторождений с числом рядов добывающих скважин больше пяти законтурное заводнение оказывает слабое воздействие на центральные части, в результате чего добыча нефти из этих частей оказывается низкой. Это ведет к тому, что темп разработки крупных месторождений в целом не может быть достаточно высоким при законтурном заводнении.

4. Законтурное заводнение не позволяет воздействовать на отдельные локальные участки пласта с целью ускорения извлечения из них нефти , выравнивания пластового давления в различных пластах и пропластках.

5. При законтурном заводнении довольно значительная часть воды, закачиваемой в пласт, уходит в водоносную область, находящуюся за контуромнефтеносности , не вытесняя нефть из пласта.

ПРИКОНТУРНОЕ ЗАВОДНЕНИЕ

Приконтурное заводнение применяется для пластов с сильно пониженной проницаемостью в законтурной части. При нем нагнетательные скважиныбурятся в водонефтяной зоне пласта между внутренним и внешним контурами нефтеносности (рис. 2).

Рис. 2. Схема размещения скважин при приконтурном заводнении

Преимущества приконтурного заводнения очевидны. Краевые части залежей, вплоть до внешнего контура нефтеносности отличаются малыми мощностяминефтеносных пород, не имеющих для разработки практического значения. На крупных платформенных залежах добывающие скважины не закладываются в зонах малых мощностей (1 – 3 м).

Метод приконтурного заводнения, по сравнению с другими, более интенсивными методами не может обеспечить в течение краткого срока достижение максимального уровня добычи , но позволяет за более длительный промежуток времени сохранить достаточно высокий стабильный уровень добычи .

ВНУТРИКОНТУРНОЕ ЗАВОДНЕНИЕ

Полученные результаты законтурного заводнения нефтяных пластов вызвали дальнейшее усовершенствование разработки нефтяных месторождений и привели к целесообразности использования внутриконтурного заводнения, особенно крупных месторождений, с разрезанием пластов рядами нагнетательных скважин на отдельные площади или блоки.

При внутриконтурном заводнении поддержание или восстановление баланса пластовой энергии осуществляется закачкой воды непосредственно в нефтенасыщенную часть пласта (рис. 3).

В России применяют следующие виды внутриконтурного заводнения:

· разрезание залежи нефти рядами нагнетательных скважин на отдельные площадки;

· барьерное заводнение;

· разрезание на отдельные блоки самостоятельной разработки;

· сводовое заводнение;

· очаговое заводнение;

· площадное заводнение.

Рис. 3. Схема размещения скважин при внутриконтурном заводнении

Система заводнения с разрезанием залежи на отдельные площади применяется на крупных месторождениях платформенного типа с широкими водонефтяными зонами. Эти зоны отрезают от основной части залежи и разрабатывают по самостоятельной системе. На средних и небольших по размеру залежах применяют поперечное разрезание их рядами нагнетательных скважин на блоки (блоковое заводнение). Ширина площадей и блоков выби-рается с учетом соотношения вязкостей и прерывистости пластов (литоло-гического замещения) в пределах до 3 – 4 км, внутри размещают нечетное число рядов добывающих скважин (не более 5 – 7).

Разрезание на отдельные площади и блоки нашло применение на Ромашкинском (23 пласта горизонта Д1 , Татария), Арланском (Башкирия), Мухановском (Куйбышевская обл.), Осинском (Пермская обл.), Покровском (Оренбургская обл.), Узеньском (Казахстан), Правдинском, Мамонтовском, Западно-Сургутском, Самотлорском (Западная Сибирь) и других место-рождениях.

Очаговое заводнение в настоящее время применяется в качестве до-полнительного мероприятия к основной системе заводнения. Оно осущест-вляется на участках залежи, из которых в связи с неоднородным строением пласта, линзовидным характером залегания песчаных тел и другими причинами, запасы нефти не вырабатываются.

Оно более эффективно на поздней стадии разработки. Внедрено на месторождениях Татарии, Башкирии, Пермской, Оренбургской областей и т.д.

Избирательное заводнение применяется в случае залежей с резко выра-женной неоднородностью пластов. Особенность этого вида заводнения заключается в том, что в начале скважины бурят по равномерной квадратной сетке без разделения на эксплуатационные и нагнетательные, а после исследования и некоторого периода разработки из их числа выбирают наиболее эффективные нагнетательные скважины. Благодаря этому, при меньшем их числе реализуется максимально интенсивная система заводнения и достигается более полный охват охват заводнением.

Площадное заводнение характеризуется рассредоточенной закачкой воды в залежь по всей площади ее нефтеносности . Площадные системы заводнения по числу скважино-точек каждого элемента залежи с расположенной в его центре одной добывающей скважиной могут быть четырех-, пяти-, семи- и девя-титочечные, также линейные (рис. 4).

Рис. 4 Площадная четырех-(а), пяти-(б), семи-(В), девятиточечная (г) и линейная (д,е) системы заводнения (с выделенными элементами)

Площадное заводнение эффективно при разработке малопроницаемых пластов. Его эффективность увеличивается с повышением однородности, толщины пласта, а также с уменьшением вязкости нефти и глубины залегания залежи.

Материальный баланс является основой всех технологических расчетов. По данным материального баланса определяются размеры и число необходимых аппаратов, расход сырья и вспомогательных продуктов, вычисляются расходные коэффициенты по сырью, выявляются отходы производства.

Материальный баланс представляет вещественное выражение закона сохранения массы применительно к химико-технологическому процессу: масса веществ, поступивших на технологическую операцию (приход) равна массе веществ, полученных в этой операции (расход), что записывается в виде уравнения баланса Σm приход = Σm расход.

Статьями прихода и расхода в материальном балансе являются массы полезного компонента сырья (m 1), примесей в сырье (m 2), целевого продукта (m 3), побочных продуктов(m 4), отходов производства (m 5) и потерь (m 6), поступивших в производство или на данную операцию:

m 1 + m 2 = m 3 + m 4 + m 5 + m 6

Материальный баланс составляется на единицу времени (час), на единицу выпускной продукции, на один производственный поток или на мощность производства в целом.

Таблица материального баланса для непрерывных процессов размещается на принципиальной технологической схеме внизу или на отдельных листах в следующем виде:

Таблица 3.1 - Материальный баланс непрерывного процесса

т.е. для каждого потока указывается его состав, расход в кг/час и нм 3 /час. Номера потоков проставляются на технологической схеме.

Для периодических процессов материальный баланс составляется в виде таблицы 3.2.

Таблица 3.2 – Материальный баланс периодического процесса

На основании общего материального баланса производства определяются расходные коэффициенты сырья и вспомогательных материалов, необходимые для оценки экономической эффективности производства. Расходные коэффициенты сырья и вспомогательных материалов следует проводить в виде таблицы 3.3.

Таблица 3.3 – Расходные коэффициенты сырья и вспомогательных материалов

При составлении материальных балансов в качестве исходных данных могут быть заданы следующие величины.

1. Годовая производительность по готовому продукту в т/год, которую для расчета надо перевести в кг/ч (приняв во внимание фактическое число часов работы установки в год).

2. Состав исходного сырья и готового продукта. Если сырьё имеет очень сложный состав, то для расчета материального баланса можно принять условный, но вполне определенный состав. Соответственно принятому составу сырья рассчитывается состав продуктов реакции.

3. Основные технологические параметры (температура, давление, мольное или массовое соотношение между реагентами), данные по конверсии и селективности. Конверсию и селективность можно принять на основе литературных и производственных данных или данных лабораторных исследований.

4. Потери на каждой стадии процесса. Технологические потери возникают вследствие уноса части продуктов реакции с абгазами или с выводимыми потоками за счет частичного растворения, неполного извлечения в массообменных процессах (абсорбции, экстракции, ректификации и т.п.). Данные потери задаются или их значения выявляются на производственной практике. Если в проекте заложены новые процессы и аппараты, то необходимо провести предварительный расчет этих процессов для нахождения указанных величин.

Все недостающие данные для составления материального баланса находят расчетным путем, основываясь на закономерностях химико-технологических процессов.

При выполнении расчетов по составлению материальных балансов необходимо ясно представлять сущность процессов, протекающих на различных стадиях в том или ином аппарате. Целесообразно придерживаться следующего порядка:

1. Составить технологическую схему процесса (без вспомогательного оборудования – насосов, компрессоров и т.д.) с нанесением всех аппаратов, где происходят изменения составов и величин материальных потоков.

2. Составить уравнения химических реакций, протекающих в каждом из аппаратов, где имеет место химическое превращение. На их основе, если известны количество и состав выходящих из аппарата потоков, можно рассчитать необходимое количество исходных продуктов. И наоборот, если известны состав и количество исходных продуктов, то зная конверсию и селективность процесса, можно рассчитать состав и количество потока, выходящего из реакционного узла.

3. Нанести на схему все известные числовые данные о количественном и качественном составе потоков.

4. Установить, какие недостающие величины подлежат определению расчетным путем, и выяснить, какие математические соотношения надо составить для нахождения неизвестных величин.

5. Располагая всеми нужными соотношениями между известными и неизвестными величинами, а также необходимыми справочными данными, приступают непосредственно к расчету материальных балансов.

Ниже приводится порядок расчета материального баланса для наиболее общих случаев.

Пример 1. Известно:

─ производительность по готовому продукту, т/год;

─ качество сырья и состав готового продукта, % масс.;

─ степень извлечения или коэффициент выхода готового продукта на всех стадиях процесса;

─ составы всех выходящих с установок производства потоков.

Материальный баланс в этом случае составляется в следующей последовательности:

1. Определяется в готовом продукте содержание целевого компонента и других примесей (кг/ч).

2. Зная потери целевого продукта на каждой стадии (Р i) определяют, какое количество целевого компонента должно содержаться в исходной реакционной массе:

С р.м. = С пр (100 + Σ % Р i),

где С р.м. ─ содержание целевого компонента в исходной реакционной массе;

% Р i ─ доля потери целевого компонента на каждой стадии;

п ─ число стадий процесса.

Пример 2. Известно:

─ производительность по готовому продукту в т/год;

─ показатели процесса ─ селективность, конверсия, соотношение исходных компонентов;

─ состав исходного сырья.

В этом случае удобно производить расчет материального баланса на

1000 кг перерабатываемого сырья. Расчет производится в следующей последовательности:

1. На основании данных по составу сырья, конверсии, селективности, соотношению исходных реагентов, по уравнениям реакций определяют состав и величину потока реакционной массы.

2. Проводят расчеты по определению величины потоков, входящих и выходящих из аппаратов, с учетом содержания целевого продукта в выходящих потоках.

3. Определяют выход готового продукта на 1000 кг перерабатываемого сырья. Затем определяют коэффициент пересчета на заданную производительность по готовому продукту по формуле:

где q з ─ заданная производительность по готовому продукту;

q ─ количество готового продукта, полученного при переработке 1000 кг сырья.

4. Составляется общий и постадийный материальный баланс производства с учетом коэффициента пересчета.

Пример 3. Известно:

─ производительность по готовому продукту, содержание в нем целевого компонента;

─ основные показатели процесса ─ конверсия, селективность, условия процесса, соотношения исходных компонентов.

В этом случае отсутствуют данные по степени извлечения основных компонентов, составу промежуточных потоков на стадиях разделения продуктов реакции.

Для составления материального баланса производства удобно проводить расчет на 1000 кг сырья или одного из исходных компонентов в последовательности, изложенной во втором примере.

Однако в данном случае для нахождения значений концентраций компонента в промежуточных потоках необходимо провести предварительный расчет аппаратов (конденсатора, сепаратора, ректификационной колонны и т.д.). Для этого задаются условиями работы аппарата (по производственным или литературным данным) и зная состав и количество потока, поступающего в аппарат, рассчитывают состав и количество потока, выходящего из аппарата и наоборот. При этом необходимо подобрать такие условия работы аппарата, которые обеспечивали бы максимальную степень извлечения полезного компонента, были бы экономически выгодными и при этом обеспечивались бы требования к качеству готового продукта и к нормам выбросов в атмосферу или в сточные воды.

Таким образом, общий материальный баланс производства (установки) включает только потоки, входящие и выходящие с производства, а материальные балансы аппаратов включают характеристики входящих и выходящих потоков данного аппарата.

В расчетно-пояснительной записке дипломного проекта при оформлении результатов расчета материального баланса должны быть приведены все имеющие место в процессе уравнения химических реакций и представлены проведенные по ним расчеты.

В технологии органических веществ часто используются схемы с рециркуляцией потоков. В этом случае составление материального баланса установки усложняется. Главной задачей расчета с рециркуляцией является определение по заданному количеству перерабатываемого сырья выхода целевого продукта и суммарных загрузок каждого аппарата.

Простейшая схема такой установки имеет вид:


I ─ блок смешения; II ─ реакторный блок; III ─ блок разделения продуктов реакции.

q 1 ─ поток свежего сырья;

q 4 ─ поток готового продукта;

q 5 ─ газы продувки;

q 6 ─ поток рециркуляции.

Рисунок 3.1 ─ Схема процесса с рециркуляцией и отдувкой части потока

Исходя из заданной производительности по готовому продукту, всегда можно определить, сколько его должно содержаться в потоке q 4 , выходящем из реактора. Из данных по конверсии и селективности, которые бывают заданы при проектировании, и используя уравнения химических реакций, можно определить величину потока q 3 и его компонентный состав (содержание основных и побочных продуктов).

Зная количество и состав потока q 3 , можно определить количество и состав потока q 2 , используя уравнения химических реакций. При расчете потока q 2 необходимо принять во внимание содержание в нем инертов, концентрация которых обычно задается или регламентируется исходя из технологических соображений. Количество инертов должно быть учтено и в последующих потоках.

Величина потока q 4 и его состав определены производительностью установки по готовому продукту и требованиями к нему, которые, как правило, задаются.

Для составления материального баланса всей установки и определения нагрузки на отдельные аппараты необходимо определить величину потоков q 1 , q 4 , q 6 и состав потока q 4 , q 6 (состав q 1 обычно задается при проектировании или определяется в дальнейшем с учетом конверсии и селективности процесса).

Методы составления и расчета материальных балансов приведены в литературе .

По закону сохранения веса веществ количество (масса) исходных материалов, взятых для производства галенового препарата или готового лекарства, должно быть равно количеству (массе) полученных материалов (готовый продукт + побочные продукты + отбросы). Это положение может быть выражено следующим равенством:

g 1= g 2+ g 3+ g 4

где g - исходные материалы; g 2 - готовый продукт; gz - побочные продукты; g 4 - отбросы (всё в килограммах).

Однако на практике количество полученных материалов всегда меньше взятых количеств исходных материалов. Объясняется это тем, что при всяком производстве имеются материальные потери. Поэтому приведенное выше уравнение должно принять такой вид:

g 1=( g 2+ g 3+ g 4)+ g 5

где g 5 - материальные потери в килограммах.

Последнее уравнение называется уравнением материального баланса; под материальным балансом понимают соотношение между количеством исходных материалов, готового продукта, побочных продуктов, отбросов и материальных потерь.

Материальные потери имеют разное происхождение. Бывают потери механические, наблюдаемые чаще всего при отсутствии или недостаточной механизации перемещения перерабатываемых материалов (пролив, распыл, утруска, бой и т. п.). Могут быть физико-химические потери, например при извлечении (неполнота экстрагирования действующих веществ), фильтрации (потеря легколетучих растворителей при вакуум-фильтровании), выпаривании (потери эфирного масла и валериановой кислоты при сгущении под вакуумом вытяжки при производстве густого экстракта валерианового корня) и т. д. Возможны также потери химического порядка, чаще всего в результате неполноты реакции. Например, если реакция между мышьяковистым ангидридом и поташом не протекает полностью (вследствие несоблюдения теплового режима), получаемый при этом фаулеров раствор мышьяка будет содержать пониженное количество арсенита калия.

Материальный баланс имеет большое практическое значение, ибо в нем, как в зеркале, отражается степень совершенства технологического процесса. Чем он полнее составлен, тем, следовательно, детальнее изучена технология данного препарата; чем меньше в балансе разного рода потерь, тем правильнее проводится процесс производства. Наоборот, чем больше в балансе материальных потерь, тем меньше освоена технология данного препарата и тем больше в ней разного рода неполадок.

Материальный баланс может быть представлен в виде не только алгебраического уравнения, но также таблиц прихода и расхода материалов. В приходной части баланса приводятся количества материалов, введенных в производство, а в расходной части - количества получаемых материалов и потерь. Итоги приходной и расходной частей баланса должны составлять одну и ту же сумму.

Материальный баланс может быть изображен также в виде диаграммы.

Материальный баланс может быть составлен: 1) на одну стадию, операцию или загрузку; 2) на единицу времени (час, смена, сутки); 3) на единицу готового продукта (на 1000 или 100 кг). Первая форма составления баланса имеет место при периодическом технологическом процессе, причем из данных баланса можно исходить при составлении производственного регламента. Вторая форма материальных расчетов применяется при непрерывном процессе с целью установления количества сырья, расходуемого в течение часа (смены, суток), и количества получаемых при этом продуктов и потерь. Материальный баланс, составленный на 1000 или 100 кг готового продукта, удобен тем, что сразу дает расходные нормы на сырье.

В зависимости от особенностей сырья баланс на некоторые стадии производства ведут не только по массе материалов, но и по качеству их составных частей. Например, для растительного сырья - по экстрактивным веществам (включающим действующие вещества), влаге и нерастворимым сухим веществам, для спирта - по абсолютному спирту и воде. Необходимо указать также, что материальный баланс можно составлять по отношению не только ко всем материалам (суммарный баланс), участвующим в процессе, но и к какому-либо одному из них.

Пользуясь уравнением материального баланса, можно определить такие важные характеристики технологического процесса, как величины выхода, технологической траты, расходных коэффициентов, расходных норм.

Выход (η) -процентное отношение количества готовой продукции (g1) к количеству исходных материалов (g2):

Технологическая трата (ε) -отношение материальных потерь к весу исходных материалов, выраженное в процентах:

Расходный коэффициент. (Kpacx) - отношение суммарной массы исходных сырьевых материалов к массе полученного готового продукта:

Пользуясь расходным коэффициентом, нетрудно подсчитать необходимое количество исходных материалов - расходные нормы (Npacx), умножая цифры фармакопейной (или МРТУ) прописи на расходный коэффициент. Если технологический процесс сопровождается образованием отходов, которые перерабатываются на побочные продукты и отбросы, все перечисленные расчеты несколько усложняются. В этом случае выход и технологическая трата определяются не от массы сырьевых материалов, а в процентах от теоретического выхода:

Расходный коэффициент также рассчитывается как отношение теоретического выхода к массе готового продукта.

Основанием для получения уравнения реактора любого типа является материальный баланс, составленный по одному из компонентов реакционной смеси.

Составим такой баланс по исходному реагенту A при проведении простой необратимой реакции A R .

В общем виде уравнение материального баланса:

где В А (пр) – количество реагента А , поступающего в единицу времени в тот реакционный объем, для которого составляется баланс;

В А (расх) – количество реагента А , расходуемого в единицу времени в реакционном объеме.

Учитывая, что поступивший в реактор реагент А расходуется в трех направлениях, можно записать:

где В А (х.р) – количество реагента А , вступающее в реакционном объеме в химическую реакцию в единицу времени;

В А (ст) – сток реагента А , т.е. количество реагента А , выходящее из реакционного объема в единицу времени;

В А (нак) – накопление реагента А , т.е. количество реагента А , остающееся в реакционном объеме в неизмененном виде в единицу времени.

С учетом уравнения (3) уравнение (2) записывается в виде:

Разность между В А (пр) и В А (ст) представляет собой количество реагента А , переносимое конвективным потоком В А(конв) :

Принимая это во внимание, уравнение (4) можно записать:

В каждом конкретном случае уравнение материального баланса принимает различную форму.

Баланс может быть составлен

v для единицы объема реакционной массы,

v для бесконечно малого (элементарного) объема,

v а также реактора в целом.

При этом можно рассчитывать материальные потоки,

· проходящие через объем за единицу времени,

· либо относить эти потоки к 1 моль исходного реагента или продукта.

В общем случае , когда концентрация реагента непостоянна в различных точках реактора или непостоянна во времени , материальный баланс составляют в дифференциальной форме для элементарного объема реактора :

где C A – концентрация реагента А в реакционной смеси;

x , y , z – пространственные координаты;

–составляющие скорости потока;

D – коэффициент молекулярной и конвективной диффузии;

r A – скорость химической реакции.

Левая часть уравнения (7) характеризует общее изменение концентрации исходного вещества во времени в элементарном объеме, для которого составляется материальный баланс. Это – накопление вещества А , которому соответствует величина В А (нак) в уравнении (6).

Первая группа членов правой части уравнения (7) отражает А вследствие переноса его реакционной массой в направлении, совпадающем с направлением потока .

Вторая группа членов правой части уравнения (7) отражает изменение концентрации реагента А в элементарном объеме в результате переноса его путем диффузии.


Указанные две группы правой части уравнения характеризуют суммарный перенос вещества в движущейся среде путем конвекции и диффузии. В уравнении (6) им соответствует величина В А(конв) такой суммарный перенос вещества называют конвективным массообменом, или конвективной диффузией).

И, наконец, член r A показывает изменение концентрации реагента А в элементарном объеме за счет химической реакции . Ему в уравнении (6) соответствует величина В А (х.р.

Применительно к типу реактора и режиму его работы дифференциальное уравнение материального баланса (7) может быть преобразовано, что облегчает его решение.

В том случае, когда параметры процесса постоянны во всем объеме реактора и во времени , нет необходимости составлять баланс в дифференциальной форме. Баланс составляют в конечных величинах , взяв разность значений параметров на входе в реактор и на выходе из него.

Все процессы, протекающие в химических реакторах, подразделяют на:

Стационарные (установившиеся);

Нестационарные (неустановившиеся).

К стационарным относят процессы, при которых в системе или в рассматриваемом элементарном объеме реакционной смеси параметры процесса (например, концентрация реагента А, температура и т.д.) не изменяются во времени, поэтому в реакторах отсутствует накопление вещества (или тепла) и производная от параметра по времени равна нулю.

При нестационарных режимах параметры непостоянны во времени и всегда происходит накопление вещества (тепла).