Вычисление криволинейного интеграла первого рода онлайн калькулятор. Криволинейный интеграл первого рода (по длине дуги)

Определение: Пусть в каждой точки гладкой кривой L = AB в плоскости Oxy задана непрерывная функция двух переменных f(x,y) . Произвольно разобьем кривую L на n частей точками A = М 0 , М 1 , М 2 , ... М n = B. Затем на каждой из полученых частей \(\bar{{M}_{i-1}{M}_{i}}\) выберем любую точку \(\bar{{M}_{i}}\left(\bar{{x}_{i}},\bar{{y}_{i}}\right)\)и составим сумму $${S}_{n}=\sum_{i=1}^{n}f\left(\bar{{x}_{i}},\bar{{y}_{i}}\right)\Delta {l}_{i}$$ где \(\Delta{l}_{i}={M}_{i-1}{M}_{i}\) - дуга дуги \(\bar{{M}_{i-1}{M}_{i}}\). Полученная сумма называется интегральной суммой первого рода для функции f(x,y) , заданой на кривой L.

Обозначим через d наибольшую из длин дуг \(\bar{{M}_{i-1}{M}_{i}}\) (таким образом, d = \(max_{i}\Delta{l}_{i}\)). Если при d ? 0 существует предел интегральных сумм S n (не зависящих от способа разбиения кривой L на части и выбора точек \(\bar{{M}_{i}}\)), то этот предел называется криволинейным интегралом первого порядка от функции f(x,y) по кривой L и обозначается $$\int_{L}f(x,y)dl$$

Можно доказать, что если функция f(x,y) непрерывна, то криволинейный интеграл \(\int_{L}f(x,y)dl\) существует.

Свойства криволинейного интеграла 1 рода

Криволинейный интеграл первого рода обладает свойствами, аналогичными соответствующим свойства определеннного интеграла:

  • аддитивность,
  • линейность,
  • оценка модуля,
  • теорема о среднем.

Однако есть отличие: $$\int_{AB}f(x,y)dl=\int_{BA}f(x,y)dl$$ т.е. криволинейный интеграл первого рода не зависит от направления интегрирования.

Вычисление криволинейных интегралов первого рода

Вычисление криволинейного интеграла первого рода сводится к вычислению определенного интеграла. А именно:

  1. Если кривая L задана непрерывно дифференцируемой функцией y=y(x), x \(\in \) , то $${\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_a^b {f\left({x,y\left(x \right)} \right)\sqrt {1 + {{\left({y"\left(x \right)} \right)}^2}} dx} ;}$$ при этом выражение \(dl=\sqrt{{1 + {{\left({y"\left(x \right)} \right)}^2}}} dx \) называется дифференциалом длины дуги.
  2. Если крива L задана параметрически, т.е. в виде x=x(t), y=y(t), где x(t), y(t) - непрерывно дифференцируемые функции на некотором отрезке \(\left [ \alpha ,\beta \right ]\), то $$ {\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_\alpha ^\beta {f\left ({x\left(t \right),y\left(t \right)} \right)\sqrt {{{\left({x"\left(t \right)} \right)}^2} + {{\left({y"\left(t \right)} \right)}^2}} dt}} $$ Это равенство распространяется на случай пространственной кривой L, заданной параметрически: x=x(t), y=y(t), z=z(t), \(t\in \left [ \alpha ,\beta \right ]\). В этом случае, если f(x,y,z) - непрерывная функция вдоль кривой L, то $$ {\int\limits_L {f\left({x,y,z} \right)dl} } = {\int\limits_\alpha ^\beta {f\left [ {x\left(t \right),y\left(t \right),z\left(t \right)} \right ]\sqrt {{{\left({x"\left(t \right)} \right)}^2} + {{\left({y"\left(t \right)} \right)}^2} + {{\left({z"\left(t \right)} \right)}^2}} dt}} $$
  3. Если плоская кривая L задана полярным уравнением r=r(\(\varphi \)), \(\varphi \in\left [ \alpha ,\beta \right ] \), то $$ {\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_\alpha ^\beta {f\left({r\cos \varphi ,r\sin \varphi } \right)\sqrt {{r^2} + {{{r}"}^2}} d\varphi}} $$

Криволинейные интегралы 1 рода - примеры

Пример 1

Вычислить криволинейный интеграл первого рода

$$ \int_{L}\frac{x}{y}dl $$ где L дуга параболы y 2 =2x, заключенная между точками (2,2) и (8,4).

Решение: Найдем дифференциал дуги dl для кривой \(y=\sqrt{2x}\). Имеем:

\({y}"=\frac{1}{\sqrt{2x}} \) $$ dl=\sqrt{1+\left ({y}" \right)^{2}} dx= \sqrt{1+\left (\frac{1}{\sqrt{2x}} \right)^{2}} dx = \sqrt{1+ \frac{1}{2x}} dx $$ Следовательно данный интеграл равен: $$\int_{L}\frac{x}{y}dl=\int_{2}^{8}\frac{x}{\sqrt{2x}}\sqrt{1+\frac{1}{2x}}dx= \int_{2}^{8}\frac{x\sqrt{1+2x}}{2x}dx= $$ $$ \frac{1}{2}\int_{2}^{8}\sqrt{1+2x}dx = \frac{1}{2}.\frac{1}{3}\left (1+2x \right)^{\frac{3}{2}}|_{2}^{8}= \frac{1}{6}(17\sqrt{17}-5\sqrt{5}) $$

Пример 2

Вычислить криволинейный интеграл первого рода \(\int_{L}\sqrt{x^2+y^2}dl \), где L - окружность x 2 +y 2 =ax (a>0).

Решение: Введем полярные координаты: \(x = r\cos \varphi \), \(y=r\sin \varphi \). Тогда поскольку x 2 +y 2 =r 2 , уравнение окружности имеет вид: \(r^{2}=arcos\varphi \), то есть \(r=acos\varphi \), а дифференциал дуги $$ dl = \sqrt{r^2+{2}"^2}d\varphi = $$ $$ =\sqrt{a^2cos^2\varphi=a^2sin^2\varphi }d\varphi=ad\varphi $$.

При этом \(\varphi\in \left [- \frac{\pi }{2} ,\frac{\pi }{2} \right ] \). Следовательно, $$ \int_{L}\sqrt{x^2+y^2}dl=a\int_{-\frac{\pi }{2}}^{\frac{\pi }{2}}acos\varphi d\varphi =2a^2 $$

Кафедра «Высшая математика»

Криволинейные интегралы

Методические указания

Волгоград


УДК 517.373(075)

Рецензент:

старший преподаватель кафедры «Прикладная математика» Н.И. Кольцова

Печатается по решению редакционно-издательского совета

Волгоградского государственного технического университета

Криволинейные интегралы: метод. указания / сост. М.И.Андреева,

О.Е. Григорьева; ВолгГТУ. – Волгоград, 2011. – 26 с.

Методические указания являются руководством к выполнению индивидуальных заданий по теме « Криволинейные интегралы и их приложения к теории поля».

В первой части методических указаний содержится необходимый теоретический материал для выполнения индивидуальных заданий.

Во второй части рассмотрены примеры выполнения всех типов заданий, включенных в индивидуальные задания по теме, что способствует лучшей организации самостоятельной работы студентов и успешному усвоению темы.

Методические указания предназначены для студентов первого и второго курсов.

© Волгоградский государственный

технический университет, 2011

  1. КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ 1 РОДА

Определение криволинейного интеграла 1 рода

Пусть È АВ – дуга плоской или пространственной кусочно-гладкой кривой L , f (P ) – заданная на этой дуге непрерывная функция, А 0 = А , А 1 , А 2 , …, А n – 1 , А n = B АВ и P i – произвольные точки на частичных дугах È А i – 1 A i , длины которых Dl i (i = 1, 2, …, n

при n ® ¥ и max Dl i ® 0, который не зависит ни от способа разбиения дуги È АВ точками A i , ни от выбора точек P i на частичных дугах È А i – 1 A i (i = 1, 2, …, n ). Этот предел называется криволинейным интегралом 1 рода от функции f (P ) по кривой L и обозначается

Вычисление криволинейного интеграла 1 рода

Вычисление криволинейного интеграла 1 рода может быть сведено к вычислению определенного интеграла при разных способах задания кривой интегрирования.

Если дуга È АВ плоской кривой задана параметрически уравнениями где x (t ) и y (t t , причем x (t 1) = x A , x (t 2) = x B , то

где - дифференциал длины дуги кривой.

Аналогичная формула имеет место в случае параметрического задания пространственной кривой L . Если дуга ÈАВ кривой L задана уравнениями , и x (t ), y (t ), z (t ) – непрерывно дифференцируемые функции параметра t , то

где - дифференциал длины дуги кривой.

в декартовых координатах

Если дуга ÈАВ плоской кривой L задана уравнением где y (x

и формула для вычисления криволинейного интеграла имеет вид:

При задании дуги ÈАВ плоской кривой L в виде x = x (y ), y Î [y 1 ; y 2 ],
где x (y ) – непрерывно дифференцируемая функция,

и криволинейный интеграл вычисляется по формуле

(1.4)

Задание кривой интегрирования полярным уравнением

Если плоская кривая L задана уравнением в полярной системе координат r = r (j), j Î , где r (j) – непрерывно дифференцируемая функция, то

и

(1.5)

Приложения криволинейного интеграла 1 рода

С помощью криволинейного интеграла 1 рода вычисляются: длина дуги кривой, площадь части цилиндрической поверхности, масса, статические моменты, моменты инерции и координаты центра тяжести материальной кривой с заданной линейной плотностью.

1. Длина l плоской или пространственной кривой L находится по формуле

2. Площадь части цилиндрической поверхности с параллельной оси OZ образующей и расположенной в плоскости XOY направляющей L , заключенной между плоскостью XOY и поверхностью, задаваемой уравнением z = f (x ; y ) (f (P ) ³ 0 при P Î L ), равна

(1.7)

3. Масса m материальной кривой L с линейной плотностью m(P ) определяется формулой

(1.8)

4. Статические моменты относительно осей Ox и Oy и координаты центра тяжести плоской материальной кривой L с линейной плотностью m(x ; y ) соответственно равны:

(1.9)

5. Статические моменты относительно плоскостей Oxy , Oxz , Oyz и координаты центра тяжести пространственной материальной кривой с линейной плотностью m(x ; y ; z) определяются по формулам:

(1.11)

6. Для плоской материальной кривой L с линейной плотностью m(x ; y ) моменты инерции относительно осей Ox , Oy и начала координат соответственно равны:

(1.13)

7. Моменты инерции пространственной материальной кривой L с линейной плотностью m(x ; y ; z) относительно координатных плоскостей вычисляются по формулам

(1.14)

а моменты инерции относительно координатных осей равны:

(1.15)

2. КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ 2 РОДА

Определение криволинейного интеграла 2 рода

Пусть ÈАВ – дуга кусочно-гладкой ориентированной кривой L , = (a x (P ); a y (P ); a z (P )) – заданная на этой дуге непрерывная векторная функция, А 0 = А , А 1 , А 2 , …, А n – 1 , А n = B – произвольное разбиение дуги АВ и P i – произвольные точки на частичных дугах А i – 1 A i . Пусть – вектор с координатами Dx i , Dy i , Dz i (i = 1, 2, …, n ), и – скалярное произведение векторов и (i = 1, 2, …, n ). Тогда существует предел последовательности интегральных сумм

при n ® ¥ и max ÷ ç ® 0, который не зависит ни от способа разбиения дуги АВ точками A i , ни от выбора точек P i на частичных дугах ÈА i – 1 A i
(i = 1, 2, …, n ). Этот предел называется криволинейным интегралом 2 рода от функции (P ) по кривой L и обозначается

В случае, когда векторная функция задана на плоской кривой L , аналогично имеем:

При изменении направления интегрирования криволинейный интеграл 2 рода меняет знак.

Криволинейные интегралы первого и второго рода связаны соотношением

(2.2)

где – единичный вектор касательной к ориентированной кривой.

С помощью криволинейного интеграла 2 рода можно вычислять работу силы при перемещении материальной точки по дуге кривой L:

Положительным направлением обхода замкнутой кривой С, ограничивающей односвязную область G , считается обход против часовой стрелки.

Криволинейный интеграл 2 рода по замкнутой кривой С называется циркуляцией и обозначается

(2.4)

Вычисление криволинейного интеграла 2 рода

Вычисление криволинейного интеграла 2 рода сводится к вычислению определенного интеграла.

Параметрическое задание кривой интегрирования

Если ÈАВ ориентированной плоской кривой задана параметрически уравнениями , где х (t ) и y (t ) – непрерывно дифференцируемые функции параметра t , причем то

Аналогичная формула имеет место в случае параметрического задания пространственной ориентированной кривой L . Если дуга ÈАВ кривой L задана уравнениями , и – непрерывно дифференцируемые функции параметра t , то

Явное задание плоской кривой интегрирования

Если дуга ÈАВ L задана в декартовых координатах уравнением где y (x ) – непрерывно дифференцируемая функция, то

(2.7)

При задании дуги ÈАВ плоской ориентированной кривой L в виде
x = x (y ), y Î [y 1 ; y 2 ], где x (y ) – непрерывно дифференцируемая функция, справедлива формула

(2.8)

Пусть функции непрерывны вместе со своими производными

в плоской замкнутой области G , ограниченной кусочно-гладкой замкнутой самонепересекающейся положительно ориентированной кривой С + . Тогда имеет место формула Грина:

Пусть G – поверхностно-односвязная область, и

= (a x (P ); a y (P ); a z (P ))

– заданное в этой области векторное поле. Поле (P ) называется потенциальным, если существует такая функция U (P ), что

(P ) = grad U (P ),

Необходимое и достаточное условие потенциальности векторного поля (P ) имеет вид:

rot (P ) = , где (2.10)

(2.11)

Если векторное поле является потенциальным, то криволинейный интеграл 2 рода не зависит от кривой интегрирования, а зависит только от координат начала и конца дуги М 0 М . Потенциал U (М ) векторного поля определяется с точностью до постоянного слагаемого и находится по формуле

(2.12)

где М 0 М – произвольная кривая, соединяющая фиксированную точку М 0 и переменную точку М . Для упрощения вычислений в качестве пути интегрирования может быть выбрана ломаная М 0 М 1 М 2 М со звеньями, параллельными координатным осям, например:

3. примеры выполнения заданий

Задание 1

Вычислить криволинейный интеграл I рода

где L – дуга кривой , 0 ≤ x ≤ 1.

Решение. По формуле (1.3) сведения криволинейного интеграла I рода к определенному интегралу в случае гладкой плоской явно заданной кривой:

где y = y (x ), x 0 ≤ x x 1 – уравнение дуги L кривой интегрирования. В рассматриваемом примере Находим производную этой функции

и дифференциал длины дуги кривой L

то, подставляя в это выражение вместо y , получаем

Преобразуем криволинейный интеграл к определенному:

Вычисляем этот интеграл с помощью подстановки . Тогда
t 2 = 1 + x , x = t 2 – 1, dx = 2t dt ; при x = 0 t = 1; а x = 1 соответствует . После преобразований получаем

Задание 2

Вычислить криволинейный интеграл 1 рода по дуге L кривой L : x = cos 3 t , y = sin 3 t , .

Решение. Так как L – дуга гладкой плоской кривой, заданной в параметрическом виде, то используем формулу (1.1) сведения криволинейного интеграла 1 рода к определенному:

.

В рассматриваемом примере

Найдем дифференциал длины дуги

Найденные выражения подставляем в формулу (1.1) и вычисляем:

Задание 3

Найти массу дуги линии L с линейной плоскостью m.

Решение. Масса m дуги L с плотностью m(P ) вычисляется по формуле (1.8)

Это криволинейный интеграл 1 рода по параметрически заданной гладкой дуге кривой в пространстве, поэтому он вычисляется по формуле (1.2) сведения криволинейного интеграла 1 рода к определенному интегралу:

Найдем производные

и дифференциал длины дуги

Подставляем эти выражения в формулу для массы:

Задание 4

Пример 1. Вычислить криволинейный интеграл 2 рода

по дуге L кривой 4x + y 2 = 4 от точки A (1; 0) до точки B (0; 2).

Решение. Плоская дуга L задана в неявном виде. Для вычисления интеграла удобнее выразить x через y :

и находить интеграл по формуле (2.8) преобразования криволинейного интеграла 2 рода в определенный интеграл по переменной y :

где a x (x ; y ) = xy – 1, a y (x ; y ) = xy 2 .

С учетом задания кривой

По формуле (2.8) получаем

Пример 2 . Вычислить криволинейный интеграл 2 рода

где L – ломаная ABC , A (1; 2), B (3; 2), C (2; 1).

Решение . По свойству аддитивности криволинейного интеграла

Каждый из интегралов- слагаемых вычисляем по формуле (2.7)

где a x (x ; y ) = x 2 + y , a y (x ; y ) = –3xy .

Уравнение отрезка прямой AB : y = 2, y ¢ = 0, x 1 = 1, x 2 = 3. Подставляя в формулу (2.7) эти выражения, получаем:

Для вычисления интеграла

составим уравнение прямой BC по формуле

где x B , y B , x C , y C – координаты точек B и С . Получаем

y – 2 = x – 3, y = x – 1, y ¢ = 1.

Подставляем полученные выражения в формулу (2.7):

Задание 5

Вычислить криволинейный интеграл 2 рода по дуге L

0 ≤ t ≤ 1.

Решение . Так как кривая интегрирования задана параметрически уравнениями x = x (t ), y = y (t ), t Î [t 1 ; t 2 ], где x (t ) и y (t ) – непрерывно дифференцируемые функции t при t Î [t 1 ; t 2 ], то для вычисления криволинейного интеграла второго рода используем формулу (2.5) сведения криволинейного интеграла к определенному для плоской параметрически заданной кривой

В рассматриваемом примере a x (x ; y ) = y ; a y (x ; y ) = –2x .

C учетом задания кривой L получаем:

Подставляем найденные выражения в формулу (2.5) и вычисляем определенный интеграл:

Задание 6

Пример 1. C + где С : y 2 = 2x , y = x – 4.

Решение. Обозначение C + указывает, что обход контура осуществляется в положительном направлении, то есть против часовой стрелки.

Проверим, что для решения задачи можно использовать формулу Грина (2.9)

Так как функции a x (x ; y ) = 2y x 2 ; a y (x ; y ) = 3x + y и их частные производные непрерывны в плоской замкнутой области G , ограниченной контуром C , тоформула Грина применима.

Для вычисления двойного интеграла изобразим область G , предварительно определив точки пересечения дуг кривых y 2 = 2x и
y = x – 4, составляющих контур C .

Точки пересечения найдем, решив систему уравнений:

Второе уравнение системы равносильно уравнению x 2 – 10x + 16 = 0, откуда x 1 = 2, x 2 = 8, y 1 = –2, y 2 = 4.

Итак, точки пересечения кривых: A (2; –2), B (8; 4).

Так как область G – правильная в направлении оси Ox , то для сведения двойного интеграла к повторному спроектируем область G на ось OY и воспользуемся формулой

.

Так как a = –2, b = 4, x 2 (y ) = 4+y , то

Пример 2. Вычислить криволинейный интеграл 2 рода по замкнутому контуру где С – контур треугольника с вершинами A (0; 0), B (1; 2), C (3; 1).

Решение. Обозначение означает, что контур треугольника обходится по часовой стрелке. В случае, когда криволинейный интеграл берется по замкнутому контуру , формула Грина принимает вид

Изобразим область G , ограниченную заданным контуром.

Функции и частные производные и непрерывны в области G , поэтому можно применить формулу Грина. Тогда

Область G не является правильной в направлении какой-либо из осей. Проведем отрезок прямой x = 1 и представим G в виде G = G 1 È G 2 , где G 1 и G 2 области, правильные в направлении оси Oy .

Тогда

Для сведения каждого из двойных интегралов по G 1 и G 2 к повторному будем использовать формулу

где [a ; b ] – проекция области D на ось Ox ,

y = y 1 (x ) – уравнение нижней ограничивающей кривой,

y = y 2 (x ) – уравнение верхней ограничивающей кривой.

Запишем уравнения границ области G 1 и найдем

AB : y = 2x , 0 ≤ x ≤ 1; AD : , 0 ≤ x ≤ 1.

Составим уравнение границы BC области G 2 , используя формулу

BC : где 1 ≤ x ≤ 3.

DC : 1 ≤ x ≤ 3.

Задание 7

Пример 1. Найти работу силы L : y = x 3 от точки M (0; 0) к точке N (1; 1).

Решение . Работу переменной силы при перемещении материальной точки по дуге кривой L определяем по формуле (2.3) (как криволинейный интеграл второго рода от функции по кривой L ) .

Так как векторная функция задана уравнением и дуга плоской ориентированной кривой определена явно уравнением y = y (x ), x Î [x 1 ; x 2 ], где y (x ) непрерывно дифференцируемая функция, то по формуле (2.7)

В рассматриваемом примере y = x 3 , , x 1 = x M = 0, x 2 = x N = 1. Поэтому

Пример 2 . Найти работу силы при перемещении материальной точки вдоль линии L : x 2 + y 2 = 4 от точки M (0; 2) к точке N (–2; 0).

Решение . Используя формулу (2.3), получаем

.

В рассматриваемом примере дуга кривой L MN ) – это четверть окружности, задаваемой каноническим уравнением x 2 + y 2 = 4.

Для вычисления криволинейного интеграла второго рода удобнее перейти к параметрическому заданию окружности: x = R cost , y = R sint и воспользоваться формулой (2.5)

Так как x = 2cost , y = 2sint , , , получаем

Задание 8

Пример 1 . Вычислить модуль циркуляции векторного поля вдоль контура Г :

Решение. Для вычисления циркуляции векторного поля вдоль замкнутого контура Г воспользуемся формулой (2.4)

Так как задано пространственное векторное поле и пространственный замкнутый контур Г , то переходя от векторной формы записи криволинейного интеграла к координатной форме, получаем

Кривая Г задана как пересечение двух поверхностей: гиперболического параболоида z = x 2 – y 2 + 2 и цилиндра x 2 + y 2 = 1. Для вычисления криволинейного интеграла удобно перейти к параметрическим уравнениям кривой Г .

Уравнение цилиндрической поверхности можно записать в виде:
x = cos t , y = sin t , z = z . Выражение для z в параметрических уравнениях кривой получается подстановкой x = cos t , y = sin t в уравнение гиперболического параболоида z = 2 + cos 2 t – sin 2 t = 2 + cos 2t . Итак, Г : x = cos t ,
y = sin t , z = 2 + cos 2t , 0 ≤ t ≤ 2p.

Так как входящие в параметрические уравнения кривой Г функции
x (t ) = cos t , y (t ) = sin t , z (t ) = 2 + cos 2t являются непрерывно дифференцируемыми функциями параметра t при t Î , то криволинейный интеграл находим по формуле (2.6)

1 рода.

1.1.1. Определение криволинейного интеграла 1 рода

Пусть на плоскости Оxy задана кривая (L). Пусть для любой точки кривой (L) определена непрерывная функция f(x;y). Разобьем дугу АВ линии (L) точками А=P 0 , P 1 , P n = В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.27)

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму

Пусть , где .

λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L )на элементарные части, ни от выбора точек M i криволинейным интегралом 1 рода от функции f(x;y) (криволинейным интегралом по длине дуги) и обозначают:

Замечание . Аналогично вводиться определение криволинейного интеграла от функции f(x;y;z) по пространственной кривой (L).

Физический смысл криволинейного интеграла 1 рода:

Если (L)- плоская кривая с линейной плоскостью , то массу кривой находят по формуле:

1.1.2. Основные свойства криволинейного интеграла 1 рода:

3. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то .

4. Криволинейный интеграл 1 рода не зависит от направления интегрирования:

5. , где - длина кривой.

1.1.3. Вычисление криволинейного интеграла 1 рода.

Вычисление криволинейного интеграла сводят к вычислению определенного интеграла.

1. Пусть кривая (L) задана уравнением . Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Вычислить массу отрезка прямой от точки А(1;1) до точки В(2;4), если .

Решение

Уравнение прямой проходящей через две точки: .

Тогда уравнение прямой (АВ ): , .

Найдём производную .

Тогда . = .

2. Пусть кривая (L) задана параметрически : .

Тогда , то есть дифференциал дуги вычисляют по формуле .

Для пространственного случая задания кривой: .Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Найти длину дуги кривой , .

Решение

Длину дуги найдём по формуле : .

Для этого найдём дифференциал дуги .

Найдём производные , , .Тогда и длина дуги: .

3. Пусть кривая (L) задана в полярной системе координат: . Тогда

То есть дифференциал дуги вычислют по формуле .

Пример

Вычислить массу дуги линии , 0≤ ≤ , если .

Решение

Массу дуги найдём по формуле:

Для этого найдёмдифференциал дуги .

Найдём производную .

1.2. Криволинейный интеграл 2 рода

1.2.1. Определение криволинейного интеграла 2 рода


Пусть на плоскости Оxy задана кривая (L) . Пусть на (L) задана непрерывная функция f (x;y). Разобьем дугу АВ линии (L) точками А = P 0 ,P 1 , P n = В в направлении от точки А к точке В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.28).

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму , где - длина проекции дуги P i -1 P i на ось Оx . Если направление движения вдоль проекции совпадает с положительным направлением оси Оx , то проекцию дуг считают положительной , иначе - отрицательной .

Пусть , где .

Если существует предел интегральной суммы при λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L) на элементарные части, ни от выбора точек M i в каждой элементарной части, то этот предел называют криволинейным интегралом 2 рода от функции f(x;y) (криволинейным интегралом по координате х ) и обозначают:

Замечание. Аналогично вводится криволинейный интеграл по координате у:

Замечание. Если (L) - замкнутая кривая, то интеграл по ней обозначают

Замечание. Если на (L ) задано сразу три функции и от этих функций существуют интегралы , , ,

то выражение: + + называют общим криволинейным интегралом 2 рода и записывают:

1.2.2. Основные свойства криволинейного интеграла 2 рода:

3. При изменении направления интегрирования криволинейный интеграл 2 рода изменяет свой знак .

4. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то

5. Если кривая (L ) лежит в плоскости:

Перпендикулярной оси Ох , то =0 ;

Перпендикулярной оси Oy , то ;

Перпендикулярной оси Oz , то =0.

6. Криволинейный интеграл 2 рода по замкнутой кривой не зависит от выбора начальной точки (зависит только от направления обхода кривой).

1.2.3. Физический смысл криволинейного интеграла 2 рода.

Работа А силы при перемещении материальной точки единичной массы из точки М в точку N вдоль (MN ) равна:

1.2.4. Вычисление криволинейного интеграла 2 рода.

Вычисление криволинейного интеграла 2 рода сводят к вычислению определенного интеграла.

1. Пусть кривая (L ) задана уравнением .

Пример

Вычислить, где (L )- ломаная OAB : O(0;0), A(0;2), B(2;4).

Решение

Так как (рис.29), то

1)Уравнение (OA) : , ,

2) Уравнение прямой (AB ): .

2. Пусть кривая (L) задана параметрически: .

Замечание. В пространственном случае:

Пример

Вычислить

Где (АВ)- отрезок от А(0;0;1) до B(2;-2;3).

Решение

Найдём уравнение прямой (АВ ):

Перейдём к параметрической записи уравнения прямой (АВ) . Тогда .

Точке A(0;0;1) соответствует параметр t равный: следовательно, t=0.

Точке B(2;-2;3) соответствует параметр t , равный: следовательно, t=1.

При перемещении от А к В ,параметр t меняется от 0 до 1 .

1.3. Формула Грина . L ) в т. М(х;у;z) с осями Оx, Оy, Oz

Лекция 5 Криволинейные интегралы 1 и 2 рода, их свойства..

Задача о массе кривой. Криволинейный интеграл 1 рода.

Задача о массе кривой. Пусть в каждой точке кусочно-гладкой материальной кривой L: (AB) задана ее плотность . Определить массу кривой.

Поступим так же, как мы поступали при определении массы плоской области (двойной интеграл) и пространственного тела (тройной интеграл).

1. Организуем разбиение области- дуги L на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и(условие А )

3. Построим интегральную сумму , где - длина дуги (обычно вводятся одни и те же обозначения для дуги и ее длины). Это – приблизительное значение массы кривой. Упрощение состоит в том, что мы предположили плотность дуги постоянной на каждом элементе и взяли конечное число элементов.

Переходя к пределу при условии (условие В ), получим криволинейный интеграл первого рода как предел интегральных сумм:

.

Теорема существования.

Пусть функция непрерывна на кусочно-гладкой дуге L. Тогда криволинейный интеграл первого рода существует как предел интегральных сумм.

Замечание. Предел этот не зависит от

Свойства криволинейного интеграла первого рода.

1. Линейность
а) свойство суперпозиции

б) свойство однородности .

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Так как в интегральной сумме число слагаемых конечно, перейдем к интегральным суммам для правых частей равенств. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

2. Аддитивность.
Если, то = +

3. .Здесь – длина дуги .

4. Если на дуге выполнено неравенство , то

Доказательство. Запишем неравенство для интегральных сумм и перейдем к пределу.

Заметим, что, в частности, возможно

5. Теорема об оценке.

Если существуют константы , что , то

Доказательство. Интегрируя неравенство (свойство 4), получим . По свойству 1 константы можно вынести из-под интегралов. Используя свойство 3, получим искомый результат.

6. Теорема о среднем (значении интеграла).

Существует точка , что

Доказательство. Так как функция непрерывна на замкнутом ограниченном множестве , то существует ее нижняя грань и верхняя грань . Выполнено неравенство . Деля обе части на L, получим . Но число заключено между нижней и верхней гранью функции. Так как функция непрерывна на замкнутом ограниченном множестве L, то в некоторой точке функция должна принимать это значение. Следовательно, .

Вычисление криволинейного интеграла первого рода.

Параметризуем дугу L: AB x = x(t), y = y(t), z =z (t). Пусть t 0 соответствует точке A, а t 1 соответствует точке B. Тогда криволинейный интеграл первого рода сводится к определенному интегралу ( - известная из 1 семестра формула для вычисления дифференциала длины дуги):

Пример. Вычислить массу одного витка однородной (плотность равна k) винтовой линии: .

Криволинейный интеграл 2 рода.

Задача о работе силы.

Какую работу производит сила F (M ) при перемещении точки M по дуге AB ?

Если бы дуга AB была отрезком прямой, а сила была бы постоянной по величине и направлению при перемещении точки M по дуге AB, то работу можно было бы вычислить по формуле , где - угол между векторами. В общем случае эту формулу можно использовать для построения интегральной суммы, предполагая силу постоянной на элементе дуги достаточно малой длины. Вместо длины малого элемента дуги можно взять длину стягивающей ее хорды , так как эти величины – эквивалентные бесконечно малые величины при условии (первый семестр).

1. Организуем разбиение области- дуги AB на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и(условие А )

2. Отметим на элементах разбиения «отмеченные точки» M i и вычислим в них значения функции

3. Построим интегральную сумму , где вектор, направленный по хорде, стягивающей -дугу .

4. Переходя к пределу при условии (условие В ), получим криволинейный интеграл второго рода как предел интегральных сумм (и работу силы):

. Часто обозначают

Теорема существования.

Пусть вектор - функция непрерывна на кусочно-гладкой дуге L. Тогда криволинейный интеграл второго рода существует как предел интегральных сумм.

.

Замечание. Предел этот не зависит от

Способа выбора разбиения, лишь бы выполнялось условие А

Выбора «отмеченных точек» на элементах разбиения,

Способа измельчения разбиения, лишь бы выполнялось условие В

Свойства криволинейного интеграла 2 рода.

1. Линейность
а) свойство суперпозиции

б) свойство однородности .

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Так как в интегральной сумме число слагаемых конечно, используя свойство скалярного произведения, перейдем к интегральным суммам для правых частей равенств. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

2. Аддитивность.
Если, то = + .

Доказательство. Выберем разбиение области L так, чтобы ни один из элементов разбиения (первоначально и при измельчении разбиения) не содержал одновременно как элементы L 1 , так и элементы L 2 . Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.

3. Ориентируемость.

= -

Доказательство. Интеграл по дуге –L, т..е. в отрицательном направлении обхода дуги есть предел интегральных сумм, в слагаемых которых вместо стоит (). Вынося «минус» из скалярного произведения и из суммы конечного числа слагаемых, переходя к пределу, получим требуемый результат.

На случай, когда областью интегрирования является отрезок некоторой кривой, лежащий в плоскости. Общая запись криволинейного интеграла следующая:

где f (x , y ) - функция двух переменных, а L - кривая, по отрезку AB которой происходит интегрирование. Если подынтегральная функция равна единице, то криволинейный интеграл равен длине дуги AB .

Как всегда в интегральном исчислении, криволинейный интеграл понимается как предел интегральных сумм каких-то очень маленьких частей чего-то очень большого. Что же суммируется в случае криволинейных интегралов?

Пусть на плоскости расположен отрезок AB некоторой кривой L , а функция двух переменных f (x , y ) определена в точках кривой L . Пусть мы выполняем с этим отрезком кривой следующий алгоритм.

  1. Разделить кривую AB на части точками (рисунки ниже).
  2. В каждой части свободно выбрать точку M .
  3. Найти значение функции в выбранных точках.
  4. Значения функции умножить на
    • длины частей в случае криволинейного интеграла первого рода ;
    • проекции частей на ось координат в случае криволинейного интеграла второго рода .
  5. Найти сумму всех произведений.
  6. Найти предел найденной интегральной суммы при условии, что длина самой длинной части кривой стремится к нулю.

Если упомянутый предел существует, то этот предел интегральной суммы и называется криволинейным интегралом от функции f (x , y ) по кривой AB .


первого рода

Случай криволинейного интеграла
второго рода

Введём следующие ообозначения.

M i (ζ i ; η i ) - выбранная на каждом участке точка с координатами.

f i (ζ i ; η i ) - значение функции f (x , y ) в выбранной точке.

Δs i - длина части отрезка кривой (в случае криволинейного интеграла первого рода).

Δx i - проекция части отрезка кривой на ось Ox (в случае криволинейного интеграла второго рода).

d = maxΔs i - длина самой длинной части отрезка кривой.

Криволинейные интегралы первого рода

Исходя из вышеизложенного о пределе интегральных сумм, криволинейный интеграл первого рода записывается так:

.

Криволинейный интеграл первого рода обладает всеми свойствами, которыми обладает определённый интеграл . Однако есть одно важное различие. У определённого интеграла при перемене местами пределов интегрирования знак меняется на противоположный:

В случае же криволинейного интеграла первого рода не имеет значения, какую из точек кривой AB (A или B ) считать началом отрезка, а какую концом, то есть

.

Криволинейные интегралы второго рода

Исходя из изложенного о пределе интегральных сумм, криволинейный интеграл второго рода записывается так:

.

В случае криволинейного интеграла второго рода при перемене местами начала и конца отрезка кривой знак интеграла меняется:

.

При составлении интегральной суммы криволинейного интеграла второго рода значения функции f i (ζ i ; η i ) можно умножать также на проекции частей отрезка кривой на ось Oy . Тогда получим интеграл

.

На практике обычно используется объединение криволинейных интегралов второго рода, то есть две функции f = P (x , y ) и f = Q (x , y ) и интегралы

,

а сумма этих интегралов

называется общим криволинейным интегралом второго рода .

Вычисление криволинейных интегралов первого рода

Вычисление криволинейных интегралов первого рода сводится к вычислению определённых интегралов. Рассмотрим два случая.

Пусть на плоскости задана кривая y = y (x ) и отрезку кривой AB соответствует изменение переменной x от a до b . Тогда в точках кривой подынтегральная функция f (x , y ) = f (x , y (x )) ("игрек" должен быть выражен через "икс"), а дифференциал дуги и криволинейный интеграл можно вычислить по формуле

.

Если интеграл проще интегрировать по y , то из уравнения кривой нужно выразить x = x (y ) ("икс" через "игрек"), где и интеграл вычисляем по формуле

.

Пример 1.

где AB - отрезок прямой между точками A (1; −1) и B (2; 1) .

Решение. Составим уравнение прямой AB , используя формулу (уравнение прямой, проходящей через две данные точки A (x 1 ; y 1 ) и B (x 2 ; y 2 ) ):

Из уравнения прямой выразим y через x :

Тогда и теперь можем вычислять интеграл, так как у нас остались одни "иксы":

Пусть в пространстве задана кривая

Тогда в точках кривой функцию нужно выразить через параметр t () а дифференциал дуги , поэтому криволинейный интеграл можно вычислить по формуле

Аналогично, если на плоскости задана кривая

,

то криволинейный интеграл вычисляется по формуле

.

Пример 2. Вычислить криволинейный интеграл

где L - часть линии окружности

находящаяся в первом октанте.

Решение. Данная кривая - четверть линии окружности, расположенная в плоскости z = 3 . Она соответствует значениям параметра . Так как

то дифференциал дуги

Подынтегральную функцию выразим через параметр t :

Теперь, когда у нас всё выражено через параметр t , можем свести вычисление данного криволинейного интеграла к определённому интегралу:

Вычисление криволинейных интегралов второго рода

Так же, как и в случае криволинейных интегралов первого рода, вычисление интегралов второго рода сводится к вычислению определённых интегралов.

Кривая дана в декартовых прямоугольных координатах

Пусть дана кривая на плоскости уравнением функции "игрек", выраженной через "икс": y = y (x ) и дуге кривой AB соответствует изменение x от a до b . Тогда в подынтегральную функцию подставим выражение "игрека" через "икс" и определим дифференциал этого выражения "игрека" по "иксу": . Теперь, когда всё выражено через "икс", криволинейный интеграл второго рода вычисляется как определённый интеграл:

Аналогично вычисляется криволинейный интеграл второго рода, когда кривая дана уравнением функции "икс", выраженной через "игрек": x = x (y ) , . В этом случае формула для вычисления интеграла следующая:

Пример 3. Вычислить криволинейный интеграл

, если

а) L - отрезок прямой OA , где О (0; 0) , A (1; −1) ;

б) L - дуга параболы y = x ² от О (0; 0) до A (1; −1) .

а) Вычислим криволинейный интеграл по отрезку прямой (на рисунке - синяя). Напишем уравнение прямой и выразим "игрек" через "икс":

.

Получаем dy = dx . Решаем данный криволинейный интеграл:

б) если L - дуга параболы y = x ² , получим dy = 2xdx . Вычисляем интеграл:

В только что решённом примере получили в двух случаях один и тот же результат. И это не совпадение, а результат закономерности, так как данный интеграл удовлетворяет условиям следующей теоремы.

Теорема . Если функции P (x ,y ) , Q (x ,y ) и их частные производные , - непрерывные в области D функции и в точках этой области частные производные равны, то криволинейный интеграл не зависит от пути интегрирования по линии L , находящейся в области D .

Кривая дана в параметрической форме

Пусть в пространстве дана кривая

.

а в подынтегральные функции подставим

выражения этих функций через параметр t . Получаем формулу для вычисления криволинейного интеграла:

Пример 4. Вычислить криволинейный интеграл

,

если L - часть эллипса

отвечающая условию y ≥ 0 .

Решение. Данная кривая - часть эллипса, находящаяся в плоскости z = 2 . Она соответствует значению параметра .

можем представить криволинейный интеграл в виде определённого интеграла и вычислить его:

Если дан криволинейный интеграл и L - замкнутая линия, то такой интеграл называется интегралом по замкнутому контуру и его проще вычислить по формуле Грина .

Больше примеров вычисления криволинейных интегралов

Пример 5. Вычислить криволинейный интеграл

где L - отрезок прямой между точками её пересечения с осями координат.

Решение. Определим точки пересечения прямой с осями координат. Подставив в уравнение прямой y = 0 , получим , . Подставив x = 0 , получим , . Таким образом, точка пересечения с осью Ox - A (2; 0) , с осью Oy - B (0; −3) .

Из уравнения прямой выразим y :

.

, .

Теперь можем представить криволинейный интеграл в виде определённого интеграла и начать вычислять его:

В подынтегральном выражении выделяем множитель , выносим его за знак интеграла. В получившемся после этого подынтегральном выражении применяем подведение под знак дифференциала и окончательно получаем.