Старт в науке. Источники радиации в повседневной жизни Предметы радиации в повседневной жизни

Бананы

Некоторые натуральные продукты содержат природный радиоактивный изотоп углерод-14, а также калий-40. К ним можно отнести картофель, бобы, семечки подсолнечника, орехи, а еще - бананы.

Кстати, калий-40, если верить ученым, имеет самый большой период полураспада - более миллиарда лет.

Еще один интересный момент: в «теле» среднего по величине банана каждую секунду происходит порядка 15 актов распада калия-40. В связи с этим в научном мире даже придумали шуточную величину под названием «банановый эквивалент». Так стали называть дозу облучения, сравнимую со съедением одного банана.

Стоит отметить, что никакой опасности для здоровья человека бананы, несмотря на содержание калия-40, не несут. Кстати, ежегодно с пищей и водой человек получает дозу радиации в размере порядка 400 мкЗв.

Сканеры в аэропортах

За последние несколько лет многие крупные аэропорты обзавелись сканерами для досмотра. От обычных металлодетекторных рамок они отличаются тем, что «создают» на экране полное изображение человека, используя технологию обратно-рассеянного излучения Backscatter X-ray. При этом лучи не проходят насквозь – они отражаются. В результате пассажир, проходящий досмотр, получает малую дозу рентгеновского излучения.

В ходе сканирования разные по плотности предметы окрашиваются на экране в разные цвета. Например, металлические вещи отобразятся черным пятном.

Сканеры весьма маломощны - пассажир получает дозу рентгеновского излучения от 0,015 до 0,88 мкзв, что совершенно безопасно для него. Для сравнения, человеку понадобится пройти 1-2 тысячи раз через сканер аэропорта, чтобы получить дозу радиации сравнимую с одним рентгеновским исследованием грудной клетки.

Рентгеновский снимок

Еще один источник так называемой «бытовой радиации» - рентгеновское обследование. Например, при одном снимке зуба пациент получает дозу радиации от 1 до 5 мкзв. А при рентгеновском снимке грудной клетки - от 30 до 300 мкзв.

Напомним, что опасной дозой считается разовая доза 1 зв, а смертельной - 3-10 зиверт.

Электро-лучевые трубки (дисплеи старых телевизоров и компьютеров)

Дисплеи излучают электромагнитные излучения, но только малая доля этого излучения (в рентгеновской части) несет потенциальную опасность, и только если вы используете ЭЛТ-дисплей (ЖК-и плазменные экраны не способны испускать рентгеновское излучение).

Среднегодовая доза от просмотра телевизоров с ЭЛТ-дисплеем составляет 10 мкзв в год, а ЭЛТ-дисплей старого компьютера даст дозу 1 мкзв в год.

Вода

В воде также содержится радиоактивные частицы, но в ничтожно малых количествах. Основным источником радиации в воде является тритий - естественный радиоактивный изотоп водорода, получаемый при соударениях космических лучей с молекулами воды в воздухе.

В среднем, мы поглощаем около 50 мкзв радиации от трития в нашей питьевой воде каждый год.

Бетон

Бетон является вторым? наиболее используемым материалом на Земле после воды, и в нем также содержатся источники следов радиоактивных элементов.

В среднем, люди получают 30 мкзв радиации от бетона тротуаров, дорог и зданий в год.

Ваше Собственное Тело

Да, ваш организм также вырабатывает биологически эффективную радиацию! В основном, мы говорим о распаде радиоактивных атомов калия (будь прокляты эти бананы!).

В теле среднего человека содержит около 30 мг радиоактивного калия-40, который производит радиоактивные бета-частицы, когда распадается.

В результате, мы получаем от своего тела дозу радиации около 3,9 мкзв каждый год. Хорошая работа! :)

Реакторы ядерных электростанций

Не считая катастрофических аварий наподобие Чернобыльской, а также других нештатных ситуаций радиационная безопасность ядерные реакторы достаточно высока.

К примеру, годовой предел дозы для облучения радиацией работника ядерной электростанции в США составляет 500 мкзв.

Сигареты

Всем известно, что курение вызывает рак. Отчасти, это потому, что сигареты буквально радиоактивные!

Исследователи подсчитали, что осаждение радиоактивного свинца в легких курильщиков приводит к годовой дозе в 1600 мкзв. Это эквивалентно дозе, получаемой космонавтом, проведших год в космическом пространстве.

На практике это число может варьироваться в зависимости от того, являетесь ли вы заядлым курильщиком или любителем.

Сотовые телефоны, маршрутизаторы WiFi и Bluetooth

Новые технологии по передаче данных хоть и имеют радиацию, но излучают очень мало энергии, к тому же, неионизирующих формы, что не ведет к повреждению тканей человека.

Наши телекоммуникационных системы используют низкие формы энергии излучения именно потому, что эти виды излучения были признаны безвредными для живых организмов.

Радиоволны, которые используют телекоммуникационные системы, являются электромагнитными полями, которые в отличие от ионизирующего излучения, такого как рентгеновские лучи или гамма-лучи, не могут ни разрывать химические связи, ни вызывают ионизацию в организме человека.

Большое количество исследований проведенных за последние два десятилетия, чтобы оценить, насколько мобильные телефоны представляют собой потенциальную опасность для здоровья человека, не установили никаких негативных последствий для здоровья.

Мобильные телефоны работают на частотах от 450 МГц и 2,7 ГГц. Главная опасность в этом частотном диапазоне, по данным ВОЗ, является тепло. Но, максимальная выходная мощность наших сотовых телефонов обычно находится в диапазоне от 0,1 до 2 Вт. Этой мощности явно недостаточно, чтобы вызвать даже ожог первой степени от телефона.

Нет также никакой опасности от беспроводных сетей (WiFi и др.), которые работают в радиочастотных диапазонах: 2.4 ГГц, 3.6 ГГц, 4.9 ГГц, 5 ГГц и 5,9 ГГц.

За последние 15 лет исследования, проведенные с целью изучения потенциальной связи между радиочастотными-передатчиками и заболеваемостью раком, не предоставили доказательства того, что воздействие радиоизлучения от передатчиков повышает риск развития рака.

Более того, долгосрочные исследования на животных не выявили повышенный риск развития рака от воздействия радиочастотных полей, даже на уровнях, которые значительно выше, чем базовых сотовых станций и беспроводных сетей.

Собственное излучение Земли

Земля сама по себе является источником радиации, благодаря медленному распаду изотопов урана и тория в земной коре и мантии.

На самом деле, из-за естественной радиоактивности наша планета производит примерно 50% тепла и это дает свои плоды!

И эта земная радиация дает нам дозу примерно 4,8 мкзв в год.

Фоновое излучение Вселенной

Реликтовое космическое излучение есть везде, это следы Большого Взрыва.

На Земле мы защищены от его воздействия благодаря атмосфере и ее озоновому слою. Тем не менее, некоторые космические излучения проходят через этот естественный фильтр на землю.

На уровне моря годовая доза радиации от реликтового излучения Вселенной составляет примерно 3 мкзв, - что эквивалентно примерно 10 флюорографий.

Космическое Пространство

Космическое пространство, как мы знаем, не очень благоприятная среда для деятельности человека.

Вне защиты озонового слоя Земли, уровень ультрафиолетового и космического излучения в сотни раз выше, чем на Земле.

Шестимесячное пребывание на Международной космической станции (МКС) эквивалентно примерно 800 мкзв дополнительного облучения, в то время как в шестимесячное путешествие к Марсу могло бы в теории дать дозу до 2500 мкзв (на основе измерений, сделанных аппаратом NASA Curiosity во время его путешествия длиной 350 миллионов миль).

Радиационное облучение является одной из самых больших медицинских проблем для любых будущих длительных космических миссий.

Невероятные факты

Каждый из нас знаком с вещами и приспособлениями, которые передают вредное для человека излучение, а значит, в той или иной степени являются радиоактивными.

Прошло много лет после трагедии в Чернобыле, Хиросиме и Нагасаки. Однако, по сей день люди испытывают на себе ужасные последствия радиоактивного излучения.

Но есть вещи, о радиоактивности которых мы даже и не подозревали.

Бразильский орех: вред

1. Бразильский орех



Доказано, что этот продукт является одним из самых радиоактивных в мире. Специалисты выяснили, что после приема в пищу даже не значительной порции бразильского ореха, моча и кал человека становятся чрезвычайно радиоактивными.

Причина этого весьма проста: корни деревьев бразильского ореха уходят так глубоко в землю, что они поглощают огромное количество радия, являющегося природным источником излучения.

2. Вокзал в Нью-Йорке



Центральный железнодорожный вокзал в Нью-Йорке является одной из самых крупных станций в мире. Наверняка, многие из тех, кому довелось её посетить, удивились бы, узнав о том, что это место считается одним из самых радиоактивных в мире.

А всё потому, что стены вокзала, а также его основание были построены с использованием гранита. Давно известно, что этот материал обладает способностью удерживать естественную радиацию.

Доказано, что уровень радиации на центральном железнодорожном вокзале в Нью-Йорке превышает все допустимые нормы и может сравниться только с уровнем, который производят атомные электростанции.

Город Денвер

3. Жизнь в Денвере



Научные факты говорят о том, что чем выше вы поднимаетесь в гору, тем большему космическому излучению подвергается ваш организм.

Можно сослаться на следующее: слой атмосферы, окружающий нашу планету, становится всё реже по мере того, как человек поднимается всё выше. Исходя из этого, мы получаем меньше защиты от вредного излучения, когда поднимаемся всё дальше от земли.

С проблемой сильнейшего излучения ежедневно сталкиваются жители Денвера, так как город расположен на высоте примерно двух километров над уровнем моря.

В результате такого расположения, люди страдают от радиации примерно в два раза больше тех, кто живет в городах, расположенных уровнем ниже. Однако, несмотря на высокий уровень излучения, наука выявила одну интересную особенность: у жителей горных местностей продолжительность жизни гораздо выше.

Достаточно привести пример кавказских долгожителей. Специалисты говорят о том, что, возможно, именно радиация является причиной их богатырского здоровья. Неужели космическая радиация способствует тому, чтобы человек жил дольше? Ученые затрудняются дать однозначный ответ на этот вопрос.

Знак "Выход"

4. Дверные указатели



Наверняка каждый из нас в повседневной жизни при посещении определенных мест сталкивался с табличкой, которая указывает на вход и выход в помещении. Этот знак со специальной подсветкой помогает людям спасаться во время различных стихийных бедствий.

Даже когда электричество полностью обесточено, такие таблички продолжают светиться, так как они не связаны с основным источником электропитания в здании. Возникает вполне резонный вопрос: как же тогда осуществляется подсветка?

Благодаря радиоактивному изотопу водорода, содержащемуся внутри знака, и получается такой вот эффект свечения. Однако существует и другая опасность: если при сильном ударе или столкновении с другим объектом, табличка разобьется, то радиоактивные изотопы, попадая в воздух, могут заразить всё здание.

Таким образом, они становятся опасными для здоровья человека.

Производство наполнителей для кошачьих туалетов

5. Наполнитель для кошачьего туалета



Если в вашем доме есть кошка, вероятность того, что вы можете получить дополнительное радиоактивное излучение, возрастает в несколько раз.

Специалисты доказали, что источником излучения в доме может стать обыкновенный и на первый взгляд безвредный наполнитель для кошачьего туалета. Причина этого довольно простая: при их производстве используется бентонитовая глина.

Этот один из основных компонентов наполнителя является довольно вредным не только для животного, но и для человека. Бентонитовая глина дает сильнейшее излучение.

Опасность заключается еще и в том, что когда мы выбрасываем использованные латки, их содержимое проникает в почву, а затем с огромной вероятностью может попасть и в грунтовые воды.

Здесь и кроется самая страшная опасность для всего человечества. Зараженная вода может стать причиной весьма серьезных заболеваний и эпидемий. Можно себе представить, сколько вредных соединений получает почва ежегодно только из-за подобных свалок.

6. Бананы



Подобно бразильским орехам, этот продукт также производит большое количество излучения с той лишь разницей, что в случае с бразильским орехом причина кроется в корнях дерева, которые поглощают вредное излучение.

В бананах же радиоактивность присутствует в их генетическом коде изначально. Однако, любители этого фрукта могут быть спокойны: ведь нужно съесть, по крайней мере, 5 миллионов плодов, чтобы возникли первые симптомы лучевой болезни.

Тем не менее, специальные приборы фиксируют довольно высокий уровень радиоактивности в бананах. Поэтому стоит с большой осторожностью относиться к этому излюбленному лакомству.

Гранитная столешница



7. Эта деталь кухонного интерьера может стать источником излучения. Как было указано выше, гранит является источником природной радиации. Поэтому, если у вас на кухне есть гранитная столешница, шансы получить небольшое излучение весьма высоки.

Вы можете не употреблять бананы или бразильские орехи, но всё равно будете подвергаться радиоактивному воздействию. Пища, обработанная на такой столешнице, становится также источником радиации, пусть даже и излучает её в маленьких количествах.

Какой вред от сигарет

8. Сигареты



Вряд ли кого-то удивит тот факт, что курение – это одна из самых пагубных привычек человека. Ежедневно средства массовой информации предупреждают нас о вреде табака.

Однако, помимо ряда вредных элементов, в некоторых сигаретах содержится опасный для жизни радиоактивный материал полоний – 210. Радиоактивный изотоп этого вещества в небольших концентрациях есть в листьях табака.

Когда курильщик затягивается сигаретой, вредные элементы попадают в органы человека и оседают в них.

Хотя полоний и содержится в сигарете в очень маленьких количествах, со временем он накапливается и впоследствии может стать причиной развития ряда онкологических заболеваний. Самая частая болезнь, постигающая курильщика – рак легких и горла.

Старая посуда

9. Старая керамика и стекло



Многие из нас хранят старую посуду, как память о чем-то или о ком-то дорогом. Однако специалисты советуют избавляться от старой посуды немедленно. По их утверждению, многие предметы гончарного производства до 1960 года являются радиоактивными.

В первую очередь, это касается посуды красного и оранжевого цвета, которая содержит вредный для организма человека уран. Именно этот элемент использовался вместе с глазурью, которой покрывалась посуда в те времена.

Смесь урана и такой глазури позволяла достичь отличительного яркого цвета. То же самое касается старого стекла с зеленоватым оттенком. Лучше избавиться от такой посуды, которая, по всей вероятности содержит уран, а в некоторых случаях еще и свинец.

10. Глянец



Если издатель хочет повысить тираж и спрос на свой журнал, он начинает печатать его на глянцевой бумаге. Сложно не согласиться с тем, что такое издание выглядит более привлекательным и солидным для покупателя.

Конечно же, глянец привлекает большинство. Однако здесь есть и другая сторона медали. Как и в случае с наполнителем для кошачьего туалета, в производстве глянца используется каолин, один из видов белой глины.

Каолин обладает способностью удерживать радиоактивные элементы, такие как уран и торий. Эта глина используется и в качестве пищевой добавки, а также как один из ингредиентов во многих лекарствах, запатентованных государством.

О том, как они выглядят сегодня, мы рассказывали в одном из прошлых обзоров — «70 лет после ада. Фото Хиросимы и Нагасаки — тогда и сейчас ».

Но, если задуматься, в повседневной жизни мы постоянно с сталкиваемся с радиацией в малых дозах. И это, в общем-то, не вызывает ни у кого беспокойства и страха. Вместе с проектом редакция Anews предлагает взглянуть на самые главные источники радиации, которые окружают нас едва ли не постоянно.

Сканеры в аэропортах

За последние несколько лет многие крупные аэропорты обзавелись сканерами для досмотра. От обычных металлодетекторных рамок они отличаются тем, что «создают» на экране полное изображение человека, используя технологию обратно-рассеянного излучения Backscatter X-ray. При этом лучи не проходят насквозь — они отражаются. В результате пассажир, проходящий досмотр, получает малую дозу рентгеновского излучения.

В ходе сканирования разные по плотности предметы окрашиваются на экране в разные цвета. Например, металлические вещи отобразятся черным пятном.

Есть и еще один вид сканера, в нем используются волны миллиметрового диапазона. Он представляет собой прозрачную капсулу с вращающимися антеннами.


В отличие от металлодетекторных рамок такие устройства считаются более эффективными в поиске запрещенных к провозу вещей. Производители сканеров утверждают, что они абсолютно безопасны для здоровья пассажиров. Однако масштабных исследований на этот счет в мире до сих пор не проводилось. Поэтому мнения специалистов разделились: одни поддерживают производителей, другие полагают, что определенный вред подобные устройства все же наносят.

Например, биохимик из Калифорнийского университета Дэвид Агард считает, что рентгеновский сканер все же вреден. По мнению ученого, человек, проходящий досмотр на этом устройстве, получает в 20 раз больше облучения, чем заявлено производителями.

Кстати, в 2011 году занимавший на тот момент пост главного санитарного врача РФ Геннадий Онищенко выразил обеспокоенность использованием аэропортами подобных сканеров.


По его мнению, из-за частых «обследований» у пассажира могут возникнуть проблемы со здоровьем. В год, уточнил глава Роспотребнадзора, можно проходить через сканер не более 20 раз.

«Лучше раздеться перед милиционером», — заявил тогда глава Роспотребнадзора.

Рентгеновский снимок

Еще один источник так называемой «бытовой радиации» — рентгеновское обследование. Например, один снимок зуба выдает от 1 до 5 мкЗв (микрозиверт — единица измерения эффективной дозы ионизирующего излучения). А снимок грудной клетки — от 30−300 мкЗв.


Смертельной считается доза радиации, равная примерно 1 зиверту.

Кстати, по словам вышеупомянутого Геннадия Онищенко, 27 процентов всего излучения, которое человек получает в течение жизни, приходится именно на медицинские обследования.

Сигареты

В 2008 году в мире активно заговорили о том, что помимо прочих «вредностей» в табаке содержится еще и токсический агент полоний-210.


Если верить данным Всемирной организации здравоохранения, токсические свойства этого радиоактивного элемента гораздо выше, чем у любого известного цианида. По мнению руководства компании British American Tobacco, умеренно курящий человек (не более 1 пачки в день) получает лишь 1/5 часть суточной дозы изотопа.

Бананы и другая еда

Некоторые натуральные продукты содержат природный радиоактивный изотоп углерод-14, а также калий-40. К ним можно отнести картофель, бобы, семечки подсолнечника, орехи, а еще — бананы.


Кстати, калий-40, если верить ученым, имеет самый большой период полураспада — более миллиарда лет. Еще один интересный момент: в «теле» среднего по величине банана каждую секунду происходит порядка 15 актов распада калия-40. В связи с этим в научном мире даже придумали шуточную величину под названием «банановый эквивалент». Так стали называть дозу облучения, сравнимую со съедением одного банана.

Стоит отметить, что никакой опасности для здоровья человека бананы, несмотря на содержание калия-40, не несут. Кстати, ежегодно с пищей и водой человек получает дозу радиации в размере порядка 400 мкЗв.

Авиапутешествия и космическая радиация

Излучение из космоса частично задерживается атмосферой Земли. Чем дальше в небо, тем выше уровень радиации. Именно поэтому при путешествии на самолете человек получает немного повышенную дозу. В среднем она составляет 5 мкЗв за один час полета. При этом летать больше 72 часов в месяц специалисты не рекомендуют.


Собственно, одним из главных источников является Земля. Излучение происходит за счет содержащихся в почве радиоактивных веществ, в частности, урана и тория. Средний радиационный фон составляет порядка 480 мкЗв в год. При этом в некоторых регионах, например, в индийском штате Керала, он значительно выше из-за внушительного содержания тория в грунте.


А как же мобильники и WI-FI-маршрутизаторы?

Вопреки распространенному мнению, от этих устройств не исходит «радиационной угрозы». Чего нельзя сказать о телевизорах с электронно-лучевой трубкой и таких же компьютерных мониторах (да, они до сих пор встречаются). Но и в этом случая доза излучения ничтожна. За год от такого устройства можно получить лишь до 10 мкЗв.


Доза радиации, получаемая человеком из естественных и «бытовых» источников, считается безопасной для организма. Специалисты полагают, что накапливаемое в течение жизни облучение не должно превышать 700 000 мкЗв. По мнению заведующего лабораторией радиационной фармакологии медицинского биофизического центра имени А. И. Бурназяна Льва Рождественского, за 70-летнюю жизнь человек получает в среднем до 20 рад (200 000 мкЗв).

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Радиация. Это слово воспринимается многими людьми крайне неприязненно. Лучевая болезнь, рак щитовидной железы, лейкоз - всё это очень страшно. Большие дозы радиации самым негативным образом влияют на человеческий организм. Но не всё так однозначно. Радиация непрерывно, в течение всей жизни воздействует на человека, значит, есть и безопасные дозы радиации?! А каков он - допустимый уровень радиации? Как сохранить жизнь человека с точки зрения данной проблемы?

Актуальность темы «Роль радиации в жизни человека» растёт в связи с увеличением использования в хозяйственной деятельности человека источников радиоактивных излучений. С другой стороны, интерес вызывает вопрос о происхождении радиационного фона и его составляющих.

Для себя мы обозначили проблему так: роль радиации в жизни человека в большей мере положительная или отрицательная? Цель нашей работы была такова: выяснить роль радиоактивных излучений в жизни человека. Перед нами были поставлены такие задачи:

    найти область применения радиоактивных излучений;

    установить, в чем опасность радиации для человека;

    познакомиться с принципом работы дозиметра;

    исследовать уровень радиации на территории нашей школы.

Для решения поставленных задач мы применяли поисковый метод получения информации, работали с литературой, рекомендованной учителем, а также изучали электронные источники информации. Анализируя теоретическую информацию, не забывали и о практической работе - с дозиметром «Снегирь». Изучив устройство и принцип действия дозиметра, мы провели замеры радиационного фона в нашей школе на разных этажах, в кабинетах, в спортивном зале и на футбольной площадке. Еще в ходе работы мы посетили клинику «МEDCИ» в нашем городе, где медицинский персонал рентген - кабинета рассказал нам много интересного о своей работе.

    1. Теоретические сведения об ионизирующих излучениях.
  1. Основная часть

На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре.

Химический элемент уран, открытый в 1840 г. химиком Пелиго Эжен Мелькиором, проявил свою способность к самопроизвольному излучению благодаря французскому ученому Анри Беккерелю. Эта способность позже была обнаружена и у других химических элементов и получила название радиоактивности. Такого рода исследованиями занимались Э.Резерфорд, П.Кюри, М.Склодовская- Кюри и др. Не сразу они поняли об опасности, исходящей от этих излучений. Многие из них впоследствии умерли от лучевой болезни.

Еще до открытия Беккереля профессор физики В.Рентген открыл Х-лучи, которые проникали через книгу, стекло и даже руку, предоставляя возможность видеть кости скелета на специальном экране. А если закрепить это изображение на фотопластинке? Так был получен первый «рентгеновский снимок».

Н.Тесла тоже экспериментировал с этими лучами, и именно он предложил использовать их для обнаружения опухолей человеческих органов. Ему удалось получить снимки животных, птиц и самого себя. Сначала он был уверен, что эти лучи безвредны и иногда даже засыпал под ними. Но после одного из опытов ученый получил сильный ожог и догадался об опасности этих лучей. Сейчас всем хорошо известно: рентгеновское излучение является ионизирующим.

Радиация (хотя специалисты говорят - ионизирующее излучение) - это поток частиц, способных ионизировать среду, то есть превращать нейтральные атомы и молекулы среды в частицы, имеющие положительный или отрицательный заряд (ионы).

2.2. Применение радиоактивных излучений (положительная роль радиации).

Применение радиоактивных излучений:

    Для исследования обмена веществ в организме человека

По химическим свойствам радиоактивные атомы не отличаются от обычных атомов. Их можно обнаружить по их излучению. Это своего рода метка, с помощью которой можно проследить за поведением данного химического элемента.

Таким способом было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Лишь железо, которое входит в состав гемоглобина, поступает в кровь в том случае, когда его запасы в организме иссякают, и оно начинает усваиваться организмом.

А вот еще пример. Известная фирма «Лего» добавляет в свою продукцию сульфат бария для того, чтобы обнаружить игрушку, попавшую в пищевод ребенка, ведь сульфат бария хорошо заметен в рентгеновских лучах.

(Сульфат барияBaSO 4 - это средство для проведения рентгенологических исследований пищевода, желудка и кишечника человека. Оно не всасывается из желудочно-кишечного тракта и не попадает в системный кровоток. В промышленных масштабах сульфат бария получают из тяжелого шпата, который является природным минералом.)

    Для лечения онкологических заболеваний, рентгенодиагностика, рентгенотерапия

Назначается курс облучения (лучевая терапия) для подавления раковых клеток на разных стадиях течения болезни (кобальтовая пушка), а также для диагностики, обследования человека.

    В промышленности: контроль износа поршневых колец в двигателях внутреннего сгорания; слежение за процессами в доменных печах; исследование структуры металлических отливок с целью обнаружения дефектов.

    В сельском хозяйстве: увеличение урожайности при облучении семян растений; осуществлениеконтроля за усвоением растениями удобрений во время роста и созревания.

    В археологии: определение возраста органических соединений, организмов методом радиоактивного углерода.

    1. Опасность радиации для человека (отрицательная роль радиации).

Периодически население нашей страны проходит медицинское обследование. При флюорографическом обследовании человека используют рентгеновские лучи, которые относятся к проникающей радиации. При воздействии радиации на организм человека процесс ионизации идет непосредственно в клетках тканей и органов. И если источник излучения обладает большой мощностью, это может привести к неприятным последствиям. Под действием ионизирующего излучения в живой клетке появляются чужеродные химически агрессивные соединения. Если таких соединений накапливается слишком много, то клетка гибнет. Опасность излучений осложняется тем, что они не вызывают никаких болевых ощущений даже при смертельных дозах.

Необходимо отметить, что все медицинские мероприятия, связанные с облучением человека, назначаются тогда, когда ожидаемый полезный эффект намного превышает возможный вред от воздействия радиации.

Компьютерная томография дает больше радиации, чем рентгеновский снимок, но позволяет выявить злокачественные опухоли и другие заболевания на ранних стадиях. Лечение назначается до того, как болезнь разовьется, и шансы на благополучный исход значительно возрастают.

Современные цифровые аппараты для флюорографического обследования позволяют снизить дозу в 10 раз по сравнению с устаревшей аппаратурой. Именно об этом нам рассказал врач-рентгенолог клиники «МEDСИ» Шустова В.Г. и рентген-лаборант Харитонова М.И.

К сожалению, на нашей планете не раз были случаи, приводящие к необратимым процессам в живых организмах. 6 августа 1945г американцы сбросили атомную бомбу на японские города Хиросима и Нагасаки. С 1949г по 1963г в Семипалатинской области (сейчас это в Казахстане) производились испытания ядерного оружия. Суммарная мощность всех взрывов в 2500 раз превышала мощность взрыва в японских городах. Жители активно выступали за запрещение ядерных взрывов и закрытие полигона. С 2001г в Семипалатинске возвышается мемориал «Сильнее смерти», как напоминание о страшных последствиях испытаний! 26 апреля 1986г произошел взрыв на Чернобыльской АЭС. Радиоактивные осадки выпали на территории многих стран. Вот уже более 30 лет прошло с тех страшных событий, но там не живут люди, территория продолжает быть брошенной и опасной… И не известно, через какое время люди поселятся там…

Радиоактивные изотопы, образующиеся в процессе деятельности предприятий атомной энергетики (без взрывов и опасных выбросов), называют искусственными или техногенными . В то же время, в каждой вещи, в каждом предмете, которые нас окружают, в том числе в питьевой воде и самом воздухе, содержатся природные или естественные радиоактивные изотопы.

(Изотопы - это разновидности данного химического элемента, обладающие одинаковыми химическими свойствами, но различающиеся по массе атомных ядер и своей радиоактивностью).

Именно природные изотопы вносят наибольший вклад в годовую дозу облучения человека. Опасными они становятся при сильной концентрации в различных технологических процессах (добыча и транспортировка нефти и природного газа, сжигание угля и мазута на тепловых электростанциях).

В грунте, строительных материалах всегда содержится некоторое количество радия Ra-226 (радиоактивный элемент), из которого образуется радиоактивный благородный газ радон (Rn-222). Газ радон не удерживается в строительных конструкциях, а свободно выходит в воздух. Он может накапливаться в закрытых, мало проветриваемых помещениях, а с воздухом попадает в легкие человека и разносится кровью по органам и тканям, что приводит к внутреннему облучению организма.

Наибольшее количество радона может скапливаться в душе, водяной пар способствует притоку радона.

Вот почему в строительстве надо использовать чистые материалы, прошедшие радиационно-гигиенический контроль. А в помещениях необходимо устраивать влажную уборку (ведь на частичках пыли могут оказаться продукты распада радона), регулярно их проветривать, над плитой обязательно должна быть вытяжка, а питьевую воду лучше кипятить. Все это позволит значительно снизить радоновую «дозу».

Так где же граница между безопасной и опасной дозой радиации? Воздействие излучений на живые организмы характеризуется дозой излучения. Поглощенной дозой излучения называют отношение поглощенной энергии ионизирующего излучения к массе облучаемого вещества. Она измеряется в грэях (Гр). Естественный фон радиации за год на человека составляет 0,002 Гр. По нормам, установленным Международной комиссией по радиационной защите, для работающих с излучением лиц предельно допустимая за год поглощенная доза составляет 0,05 Гр.

Для оценки действия излучения на живые организмы введена специальная величина - эквивалентная доза поглощенного излучения . Измеряется эта величина в зивертах (Зв) - в честь шведского ученого - радиофизика Рольфа Зиверта. Свое название она получила в 1979г.

1 Зв - эквивалентная доза, при которой доза поглощенного излучения равна 1 Гр.

Максимальное значение эквивалентной дозы, при получении которого происходит поражение организма, выражающееся в нарушении деления клеток, составляет 0,5 Зв.

Среднее значение эквивалентной дозы поглощенного излучения за счет естественного радиационного фона составляет 2 мЗв в год на человека.

Для обычного человека, не работающего с источниками радиации, допустимая годовая доза от техногенной радиации (исключая медицинское облучение) составляет 1 мЗв, а для сотрудников, работающих с источниками радиации - 20 мЗв.

Согласно Постановлению Главного государственного санитарного врача РФ Г. Г. Онищенко № 11 от 21.04. 2006г «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п.3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».

Во время посещения клиники «МEDСИ» врач Шустова В.Г. сказала, что врачи и сотрудники, обслуживающие рентгеновский аппарат и компьютерный томограф, пользуются индивидуальными дозиметрами. (Правда, сфотографировать томограф и дозиметр они нам не разрешили.)

    1. Результаты исследования уровня радиации на территории школы.

Практическая часть нашей работы состояла в исследовании уровня радиационного фона на территории нашей школы. Разобравшись в принципе действия дозиметра «Снегирь», мы произвели замеры на первом этаже школы, где находится кабинет физики, в столовой, где учащиеся вкусно кушают, на втором этаже, где находится учительская, а также на третьем этаже нашей школы, в кабинете информатики, истории, в большом спортивном зале. Результаты таковы:

1 этаж - 0,11 мЗв; 2 этаж - 0,1 мЗв; столовая - 0,09 мЗв;

3 этаж - 0,1 мЗв; кабинет истории - 0,13 мЗв;

кабинет информатики - 0,14 мЗв; спортивный зал - 0,12 мЗв;

на футбольной площадке - 0,07 мЗв.

Эти исследования показали, что на территории нашей школы не превышен уровень радиационного фона.

  1. Заключение

Итак, мы многое узнали о радиации, выяснили, что ее воздействие на человека бывает часто отрицательным, негативным. Но и положительного действия в жизни человека, как оказывается, тоже достаточно. Познакомились с ранее неизвестным измерительным прибором (дозиметром) и теперь умеем пользоваться им. Благодаря дозиметру «Снегирь» мы теперь уверены, что вокруг нас - безопасная окружающая среда.

В заключении хотелось бы сказать, что может скоро наступит будущее, когда роль радиации (и атомной энергетики в целом) будет только положительная, и фантастические идеи станут реальностью.

«В недалеком будущем на автомобилях могут быть установлены портативные атомные двигатели, а заправку их необходимым ядерным горючим произведут один раз - при изготовлении машин на заводе… Самолеты будут совершать рейсы в стратосфере, где воздух сильно разрежен. Атомный двигатель даст самолету колоссальные возможности, которых он сейчас не имеет».

И. К. Цацулин «Атомная крепость».

  1. Список использованных источников и литературы

    Акатов А.А., Коряковский Ю.С. Радиация: от космических лучей до компьютерного томографа - М. Информационный центр по атомной энергии, 2014

    Благодаров В.С., Равуцкая Ж.И. Физика 7-11 классы. Организация внеклассной работы - Волгоград. : Учитель, 2011

    Воронцов-Вельяминов Б.А.Очерки о Вселенной - М.: Наука, 1980

    Перевод с английского Банникова Ю.А.: Радиация. Дозы, эффекты, риск - М.: Мир, 1990

    https://ru.wikipedia.org/wiki/Зиверт,_Рольф

    http://rudoctor.net/medicine2009/bz-qw/med-pmpur.htm

    http://thelib.ru/books/caculin_ivan_k/atomnaya_krepost.html

радиация облучение ионизирующий

Радиационное воздействие от атомных электростанций вряд ли увеличит естественный уровень радиоактивности на нашей планете. Для тревоги нет оснований, особенно при сопоставлении пользы от атомных электростанций с их неизмеримо малым влиянием на радиоактивность окружающей нас среды. Все подсчеты велись крупномасштабно: в отношении всей планеты и человечества на десятки лет вперед. Естественно, возникает вопрос: а не сталкиваемся ли мы с невидимыми лучами в повседневной жизни Не создает ли человек вокруг себя дополнительные источники радиации при той или иной деятельности, не пользуемся ли мы этими источниками, подчас не ассоциируя их с действием атомной радиации?

В современной жизни человек действительно создает ряд воздействующих на него источников, иногда очень слабых, а подчас и достаточно сильных.

Рассмотрим хорошо известные рентгеновские диагностические аппараты, которыми снабжены все поликлиники и с которыми мы сталкиваемся при всевозможных профилактических обследованиях, проводимых в массовом масштабе среди населения. Статистика показывает, что количество лиц, проходящих рентгеновское обследование, возрастает с каждым годом на 5-15% в зависимости от страны, уровня медицинского обслуживания. Все мы хорошо знаем, какую огромную пользу приносит современной медицине рентгенодиагностика. Человек заболел. Врач усматривает признаки серьезного заболевания. Рентгеновское обследование часто дает решающие данные, следуя которым врач назначает лечение и спасает жизнь человеку. Во всех этих случаях уже не важно, какую дозу облучения получит больной при той или иной процедуре. Речь идет о заболевшем человеке, о ликвидации непосредственной угрозы его здоровью, и в этой ситуации вряд ли уместно рассматривать возможные отдаленные последствия от самой процедуры облучения.

Но за последнее десятилетие в медицине наметилась тенденция усиленного использования рентгеновских обследований здорового населения, начиная от школьников и призывников в армию и кончая населением зрелого возраста - в порядке диспансеризации. Конечно, врачи и здесь ставят перед собой гуманные цели: своевременно выявить начало еще скрытой болезни, чтобы вовремя и с большим успехом начать лечение. В результате тысячи, сотни тысяч здоровых людей проходят через рентгеновские кабинеты. В идеале врачи стремятся такие обследования проводить ежегодно. В результате общая облученность населения повышается. О каких же дозах облучения идет речь при медицинских обследованиях?

Научный комитет по изучению действия атомной радиации при ООН тщательно изучил этот вопрос, и полученные выводы многих удивили. Оказалось, что на сегодняшний день наибольшую дозу облучения население получает именно от медицинских обследований. Подсчитав общую среднюю дозу облучения для всего населения развитых стран от различных источников радиации, комитет обнаружил, что облученность от силовых реакторов даже к 2000 г. вряд ли превысит 2 - 4% от естественной радиации, от радиоактивных осадков 3 - 6 %, а от медицинских облучений население ежегодно получает дозы, достигающие 20% естественного фона.

Каждое диагностическое «просвечивание» дает на исследуемый орган облучение, начиная от дозы, равной годовой дозе от естественного фона (примерно 0,1 рад), до дозы, превышающей его в 50 раз (до 5 рад). Особый интерес представляют дозы, получаемые при диагностических просвечиваниях критическими тканями, такими как гонады (повышение вероятности генетического повреждения потомства) или кроветворные ткани, такие, как костный мозг.

В среднем медицинские диагностические «просвечивания» рентгеном для населения развитых стран (Англия, Япония, СССР, США, Швеция и др.) составляют среднюю годовую дозу, равную одной пятой части естественного фона радиации.

Это, конечно, в среднем очень большие дозы, сопоставимые с естественным фоном, и вряд ли здесь уместно говорить о какой-либо опасности. Тем не менее, современная техника позволяет уменьшить дозовые нагрузки при профилактических осмотрах, и это должно быть использовано.

Значительного снижения дозы облучения при рентгеновских обследованиях можно достигнуть, совершенствуя аппаратуру, защиту, повышая чувствительность регистрирующих устройств и сокращая время облучения.

Где еще в нашей повседневной жизни мы сталкиваемся с повышенной ионизирующей радиацией?

Одно время широкое распространение получили часы со светящимся циферблатом. Люминесцирующая масса, наносимая на циферблат, включала в свой состав соли радия. Излучения радия возбуждали люминесцирующую краску, и она светилась в темноте голубоватым светом. Но излучение радия с энергией 0,18 МэВ проникало за пределы часов и облучало окружающее пространство. Обычные ручные светящиеся часы содержали от 0,015 до 4,5 мКи радия. Расчет показал, что наибольшую дозу радиации (около 2 - 4 рад) за год получают мышечные ткани руки. Мышечная ткань сравнительно радиоустойчива, и это обстоятельство не тревожило радиобиологов. Но светящиеся часы, находящиеся на руке очень много времени, расположены на уровне гонад и, следовательно, могут вызвать значительное облучение этих радиочувствительных клеток. Именно поэтому были предприняты специальные расчеты дозы, приходящейся на эти ткани за год.

Исходя из расчетов, что часы находятся на руке 16 часов в сутки, была вычислена возможная доза облучения гонад. Она оказалась лежащей в пределах от 1 до 60 мрад/год. Значительно большую дозу можно получить от больших карманных светящихся часов, особенно если их носить в кармане жилета. При этом доза облучения может возрасти до 100 мрад. Обследование продавцов, стоящих за прилавком со множеством светящихся часов, показало, что доза облучения была около 70 мрад. Подобные дозы, удваивающие естественный радиоактивный фон, увеличивают вероятность появления наследственных повреждений в потомстве. Вот почему Международное агентство по мирному использованию атомной энергии в 1967 г. рекомендовало заменить радий в светящихся массах такими радионуклидами, как тритий (Н3) или прометий - 147 (Рm147), обладающими мягким?-излучением, полностью поглощаемым часовой оболочкой.

Нельзя не упомянуть о множестве светящихся приборов в кабинах самолетов, пультах управления и др. Конечно, уровни радиации очень различны в зависимости от количества приборов, их расположения и удаленности от работающего, что постоянно должны учитывать органы санитарного надзора.

Далее речь пойдет о телевизоре, который используется в повседневной жизни любого гражданина. Телевизоры распространены в современном обществе столь широко, что вопрос о дозе радиации, поступающей от телевизора, был тщательно исследован. Интенсивность слабого вторичного излучения экрана, бомбардируемого электронным пучком, зависит от напряжения, под которым работает данная система телевизора. Как правило, черно-белые телевизоры, работающие при напряжении в 15 кВ, дают на поверхности экрана дозы 0,5 - 1 мрад/ч. Однако это мягкое излучение поглощается стеклянным или пластиковым покрытием трубки, и уже на расстоянии 5 см от экрана радиация практически не обнаруживается.

Иначе обстоит дело с цветными телевизорами. Работая на значительно большем напряжении, они дают от 0,5 до 150 мрад/ч вблизи экрана на расстоянии 5 см. предположим, вы смотрите цветной телевизор три - четыре дня в неделю по три часа в день. В год получим от 1 до 80 рад (не мрад, а рад!). эта цифра уже значительно превосходит естественный фон облучения. В действительности получаемые людьми дозы значительно меньше. Чем больше расстояние от человека до телевизора, тем меньше доза облучения - она падает пропорционально квадрату расстояния.

Радиация от телевизора не должна нас волновать. Системы телевизоров все время совершенствуется, и внешняя радиация их снижается.

Еще один источник слабых излучений в нашей повседневной жизни - это изделия из цветной керамики и майолики. Для создания характерного цвета глазури, придающего художественную ценность керамической посуде, вазам и блюдам из майолики, издревле используются соединения урана, образующие жаропрочные краски. Уран - долгоживущий естественный радионуклид - всегда содержит дочерние продукты распада, дающие достаточно жесткое излучение, легко обнаруживаемое современными счетчиками вблизи поверхности керамических изделий. Интенсивность излучения быстро падает с расстоянием, и если в квартирах на полках стоят керамические кувшины, майоликовые блюда или статуэтки, то, любуясь ими на расстоянии 1-2 м, человек получает исчезающее малую дозу облучения. Несколько иначе обстоит дело с довольно распространенными керамическими кофейными и чайными сервизами. Чашку держат в руках, прикасаются к ней губами. Правда, такие контакты кратковременны, и значительного облучения не происходит.

Были проведены соответствующие расчеты для наиболее распространенных керамических чашек для кофе. Если в течение дня 90 мин непосредственно соприкасаться с керамической посудой, то за год от радиации руки могут получить дозу облучения от 2 до 10 рад. Эта доза в 100 раз превосходит естественный фон облучения.

Интересная проблема возникла в ФРГ и США в связи с широким применением для изготовления искусственных фарфоровых зубов особой запатентованной массы, в состав которой входили соединения урана и церия. Эти добавки вызывали слабую флуоресценцию фарфоровых зубов. Зубные протезы являлись слабыми источниками радиации. Но так как они постоянно находятся во рту, то десна получали ощутимую дозу. Был издан специальный закон, регламентирующий содержание урана в фарфоре искусственных зубов (не выше 0,1%). Даже при таком содержании ротовой эпителий будет получать в год дозу около 3 рад, т.е. дозу в 30 раз большую, чем от естественного фона.

Некоторые сорта оптических стекол изготовляют с добавлением в их состав тория (18-30%). Изготовление линз для очков из такого стекла приводило к слабому, но постоянно действующему облучению глаз. Сейчас содержание тория в стеклах для очков регламентируется законом.